Annali di Matematica Pura ed Applicata

, Volume 78, Issue 1, pp 91–103

On the stability properties of a third order system

  • G. P. Szegö
  • C. Olech
  • A. Cellina
Article

Summary

A third order differential equation suggested by a problem in power system is considered.

The combined application of very general results, namely the topological method of Wazewski[1,3], the extension theorem[1,5] and the topological properties of attractors[1,9] leads to a complete qualiiative description of the behaviour of the solutions of the equation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    N. P. Bhatia andG. P. Szegö,Dynamical systems: Stability Theory and Applications, Lecture Notes in Mathematics N. 35 Springer Verlag, New York-Heidelberg-Berlin.Google Scholar
  2. [2]
    A. M. Liapunov,Problème géneral de la stabilité du mouvement, Kharkov, 1892, French Translation, Ann. Math. St. N. 17, Princeton University Press, Princeton 1947.Google Scholar
  3. [3]
    T. Wazewski,Sur un principe topologique de l’examen de l’allure asymqtotique des intégrales des équations différentielles ordinaires, Ann. Soc. Polon. Math. vol. 20 (1947) pp. 279–313.MathSciNetGoogle Scholar
  4. [4]
    A. Pliś,Sets filled by asymptotic integrals of ordinary differential equations, Bull. Acad. Pol. Sc. Cl. III, vol. 4, (1956), pp. 749–752.Google Scholar
  5. [5]
    N. P. Bhatia andG. P. Szegö,An extension theorem for asymptotic stability, Proc. Internat. Symposium on Diff. Equations and Dynamical System. Portorico 1966, Academic Press. New York 1967.Google Scholar
  6. [6]
    E. A. Barbashin andN. N. Krasovskii,On the stability of motion in the large, Pokl. Acad. Nauk SSSR, vol. 86 (1952), pp. 453–456.Google Scholar
  7. [7]
    J. P. La Salle,An invariance principle in the theory of stability, Brown University, Center for Dynamical Systems, Tech. Rept. 66-I.Google Scholar
  8. [8]
    —— ——,The extent of asymptotic stability, Proc. Nat. Acad. Sc. vol. 46 (1960), pp. 363–365.MATHGoogle Scholar
  9. [9]
    N. P. Bhatia andG. P. Szegö,Weak attractors in R n, Math. System Theory, vol. 1, (1967), pp. 129–134.CrossRefMathSciNetGoogle Scholar
  10. [10]
    P. Hartman,Ordinary Differential Equations, J. Wiley, New York, 1964.Google Scholar
  11. [11]
    M. W. Siddiqee,Direct method of Liapunov and transient stability analysis, Ph. D. Thesis, Univ. Minnesota, Minneapolis, Aug. 1967.Google Scholar

Copyright information

© Nicola Zanichelli Editore 1968

Authors and Affiliations

  • G. P. Szegö
    • 1
  • C. Olech
    • 2
  • A. Cellina
    • 1
  1. 1.Università di MilanoMilanoItaly
  2. 2.Institut Matematiki, PANKrakowPoland

Personalised recommendations