Advertisement

Annali di Matematica Pura ed Applicata

, Volume 37, Issue 1, pp 1–36 | Cite as

Contact Tensor Calculus

  • K. Yano
  • E. T. Davies
Article

Summary

It is shown that a Tensor Calculus in which the group of transformations is the group of contact transformations can be developed by making a systematic use of existing theories of non-holonomic spaces. The generalizations of Riemannian Geometry are then considered in relation to the new Calculus.

Keywords

Riemannian Geometry Contact Transformation Tensor Calculus Contact Tensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Bibliography

  1. [1]
    L. Berwald,Über die n-dimensionalen Cartanschen Räumen und eine Normalform der zweiten Variation eines (n − 1)-fachen Oberflächenintegrals, « Acta Math. », 71 (1939), 191–248.zbMATHMathSciNetGoogle Scholar
  2. [2]
    —— ——Über Finslersche und Cartansche Geometrie II, « Compositio Math. », 7 (1939), 141–176.MathSciNetGoogle Scholar
  3. [3]
    E. Cartan,Les espaces métriques fondés sur la notion d'aire, « Actualités Sci. et Ind. », 72 (1933).Google Scholar
  4. [4]
    -- --Les espaces de Finsler, Ibidem, 79 (1934).Google Scholar
  5. [5]
    E. T. Davies,On metric spaces based on a vector density, « Proc. London Math. Soc. », II ser., 49 (1947), 241–229.zbMATHMathSciNetGoogle Scholar
  6. [6]
    —— ——On the invariant theory of contact transformations, « Math. Zeitschr. », 57 (1953), 415–427.CrossRefzbMATHGoogle Scholar
  7. [7]
    P. Dienes,On the fundamental formulae of the geometry of tensor submanifolds, « Journ. Math. pures et appl. », XI, ser. 2, (1932), 255–282.Google Scholar
  8. [8]
    T. C. Doyle,Tensor decomposition with applications to the contact and complex groups, « Annals of Math. », 42 (1941), 698–721.CrossRefzbMATHMathSciNetGoogle Scholar
  9. [9]
    L. P. Eisenhart,Continuous groups of transformations, « Princeton University Press », (1933).Google Scholar
  10. [10]
    —— ——Finsler spaces derived from Riemann spaces by contact transformations « Annals of Math. », 49 (1948), 227–254.CrossRefzbMATHMathSciNetGoogle Scholar
  11. [11]
    L. P. Eisenhart andM. S. Knebelman,Invariant theory of homogeneous contact transformations, Ibidem, 37 (1936), 747–765.CrossRefMathSciNetGoogle Scholar
  12. [12]
    P. Finsler,Über Kurven und Flächen in allgemeinen Räumen, Basel (1951).Google Scholar
  13. [13]
    T. Hosokawa,Connections in the manifold admitting contact transformations, « Journ. of the Fac. of Sci., Hokkaido Imp. Univ. », 2 (1934), 169–176.zbMATHGoogle Scholar
  14. [14]
    H. C. Lee,On the differential geometry of contact transformations, « Proc. Akad. Amsterdam », 40 (1937), 695–700.zbMATHGoogle Scholar
  15. [15]
    A. Moor,Über die Dualität von Finslerschen und Cartanschen Räumen, « Acta Math. », 88 (1952), 347–370.CrossRefzbMATHMathSciNetGoogle Scholar
  16. [16]
    Y. Muto,On the connections in the manifold admitting homogeneous contact transformations, « Proc. Phys.-Math. Soc. of Japan », 20 (1938), 451–457.zbMATHGoogle Scholar
  17. [17]
    Y. Muto andK. Yano,Sur les transformations de contact et les espaces de Finsler, « Tôhoku Math. Journ. », 45 (1939), 293–307.Google Scholar
  18. [18]
    J. A. Schouten,Zur Differentialgeometrie der Gruppe der Rerührungstransformationen, « Proc. Akad. Amsterdam », 40 (1937), 100–107; 236–245; 470–480.zbMATHGoogle Scholar
  19. [19]
    J. A. Schouten andJ. Haantjes,Über die Festlegung von allgemeinen Massbestimmungen und Übertragungen in bezug auf ko- und kontravariante Vektordichten, « Monatshefte fur Math. und Physik », 43 (1936), 161–176.CrossRefGoogle Scholar
  20. [20]
    J. A. Schouten andE. R. van Kampen,Zur Einbettungs-und Krümmungstheorie nicht holonomer Gebilde, « Math. Ann. », 103 (1930), 752–783.CrossRefMathSciNetGoogle Scholar
  21. [21]
    G. Vranceanu,Les espaces non holonomes, « Mémorials des Sci. Math. », (1936).Google Scholar
  22. [22]
    K. Yano,On the theory of linear connections in the manifold admitting contact transformations, « Proc. Phys.-Math. Soc. of Japan », 17 (1935), 39–47.zbMATHGoogle Scholar
  23. [23]
    —— ——On the metric space K n, Ibidem, 168–169.Google Scholar
  24. [24]
    K. Yano andSt. Petrescu,Sur les espaces métriques non holonomes complémentaires, « Disquis. Math. et Phys. », 1 (1940), 192–246.MathSciNetGoogle Scholar

Copyright information

© Swets & Zeitlinger B. V. 1954

Authors and Affiliations

  • K. Yano
    • 1
  • E. T. Davies
    • 2
  1. 1.Roma
  2. 2.Southampton

Personalised recommendations