Advertisement

Annali di Matematica Pura ed Applicata

, Volume 73, Issue 1, pp 253–291 | Cite as

A study of the behaviour of sequence of Fourier coefficients

  • P. L. Sharma
  • O. P. Rai
Article
  • 19 Downloads

Summary

In this paper the authors have studied the behaviour of the sequence of Fourier coefficients by applying Harmonic and Nörlund transforms.

Keywords

Fourier Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [1]
    R. G. Cooke,Infinite matrices and sequence spaces, (1950).Google Scholar
  2. [2]
    L. Fejér,Über die Bestimmung des Sprunges der Funktion aus ihrer Fourierreihe, « J. reine angew Math. », 142 (1913), pp. 165–168.zbMATHGoogle Scholar
  3. [3]
    J. J. Gergen,Convergence and summability criteria for Fourier series, « Quarterly Jour. Math. », (Oxford), Vol. 1 (1930), pp. 252–275.zbMATHGoogle Scholar
  4. [4]
    G. H. Hardy -W. W. Rogosinski,Note on Fourier series IV summability (R 2), « Proc. Cambridge Philos. Soc. », Vol. 43 (1947), pp. 10–25.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    E. Hille -J. D. Tamirkin,On the summability of Fourier Fourier series (1), « Trans. Amer. Math. Soc. », Vol. 34 (1932), pp. 757–783.CrossRefMathSciNetGoogle Scholar
  6. [6]
    H. Hirokawa,On a sequence of Fourier Coefficients, « Kodia Math. Seminar report », 8 (1958), pp. 1–8.zbMATHMathSciNetGoogle Scholar
  7. [7]
    F. C. Hsiang,On some extension of theorem of Fejér, « Math. Scand. », 7 (1959), pp. 333–336.zbMATHMathSciNetGoogle Scholar
  8. [8]
    —— ——,On a theorem of Fejér, « Pacific Jour. Math. », Vol. 11 (1961), pp. 1359–1362.zbMATHMathSciNetGoogle Scholar
  9. [9]
    K. S. K. Iyenger,A Tauberian theorem and its applications to convergence of Fourier series, « Proc. Indian Acad. Sci. Sect. A », Vol. 18 A (1943), pp. 81–87.MathSciNetGoogle Scholar
  10. [10]
    I. C. Kachroo,Thesis presented for the degree of Doctor of Philosophy of the University of Sagar, (1965).Google Scholar
  11. [11]
    S. Kumari,Determination of the jump of a function by its Fourier series, « Proc. Nat. Inst. Sci. India », 24 (1958), pp. 204–216.zbMATHMathSciNetGoogle Scholar
  12. [12]
    —— ——,On the behaviour of the Fourier Coefficients, « Proc. Amer. Math. Soc. », Vol. 14 (1963), pp. 243–255.CrossRefzbMATHMathSciNetGoogle Scholar
  13. [13]
    R. Mohanty -M. Nanda,On the behaviour of Fourier Coefficients, « Proc. Amer. Math. Soc. », Vol. 5 (1954), pp. 79–84.CrossRefMathSciNetzbMATHGoogle Scholar
  14. [14]
    N. Oberchkoff,Sur la série Conjuguie de la série de Fourier, Annuaire Universite de Sofia, 1. Faculte Physico Mathemalique Livere 1, Vol. 39 (1943), pp. 321–380.Google Scholar
  15. [15]
    O. P. Rai,Harmonic summability of a sequence of Fourier Coefficients, « Proc. Japan Acad. », Vol. 41 (1965), pp. 123–127.zbMATHMathSciNetGoogle Scholar
  16. [16]
    M. Riesz,Sur l’equivalence de certain methodes de sommetion, « Proc. Lond. Math. Soc », (2), 22 (1924), pp. 412–419.zbMATHGoogle Scholar
  17. [17]
    P. L. Sharma,On the sequence of Fourier Coefficients, « Proc. Amer. Math. Soc. », 15 (1964), pp. 337–340.CrossRefzbMATHMathSciNetGoogle Scholar
  18. [18]
    —— ——,On the sequence of Fourier Coefficients, « Proc. Japan Acad. », Vol. 41 (1965), pp. 52–55.zbMATHMathSciNetCrossRefGoogle Scholar
  19. [19]
    J. A. Siddiqi,Thesis presented for the degree of Doctor of Philosophy of the University of Allahabad, (1949).Google Scholar
  20. [20]
    —— ——,On a theorem of Fajér, « Math. Zeit », 61 (1954–55), pp. 79–81.CrossRefzbMATHMathSciNetGoogle Scholar
  21. [21]
    —— ——,The Fourier Coefficients of continuous function of bounded variation, « Math. Annalen. », 143 (1961), pp. 103–108.CrossRefzbMATHMathSciNetGoogle Scholar
  22. [22]
    B. Singh,On a sequence of Fourier Coefficients, « Proc. Amer. Math. Soc. », Vol. 7 (1956), pp. 796–803.CrossRefzbMATHMathSciNetGoogle Scholar
  23. [23]
    T. Singh,Nörlund summability of a sequence of Fourier Coefficients, « Proc. Japan, Acad. », Vol. 39 (1963).Google Scholar
  24. [24]
    G. Sunouchi,A new convergence criteria for Fourier series, « Tohoku. Math. Journ. », 5 (1953), pp. 238–242.Google Scholar
  25. [25]
    E. C. Tictchmarsh,Theory of functions, Oxford (1952), pp. 40.Google Scholar
  26. [26]
    O. P. Varshney,On the sequence of Fourier Coefficients, « Proc. Amer. Math. Soc. », Vol. 10 (1959), pp. 201–216.Google Scholar
  27. [27]
    A. Zygmund,Trigonometrical series, (1935), pp. 55, 62.Google Scholar

Copyright information

© Nicola Zanichelli Editore 1966

Authors and Affiliations

  • P. L. Sharma
    • 1
  • O. P. Rai
    • 1
  1. 1.India

Personalised recommendations