Advertisement

Annali di Matematica Pura ed Applicata

, Volume 88, Issue 1, pp 177–191 | Cite as

A two phase Stefan problem with temperature boundary conditions

  • John R. Cannon
  • Mario Primicerio
Article

Abstract

We studied a two phase Stefan problem in a infinite plane slab, when the temperatures are prescribed on the two limiting planes.

We proved global existence and uniqueness of the solution under minimal smoothness assumptions upon the initial and boundary data. Furthermore, we demonstrated the continuous and monotone dependence of the solution on the initial and boundary data.

Keywords

Boundary Condition Global Existence Boundary Data Temperature Boundary Stefan Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Riassunto

Si studia un problema di Stefan a due fasi in uno strato piano indefinito, quando sia assegnata la temperatura sui piani che delimitano lo strato stesso.

Viene dimostrata l’esistenza (in grande) e l’unicità della soluzione sotto ipotesi assai generali sui dati iniziali ed al contorno. Sî prova la dipendenza continua e monotona della soluzione dai dati iniziali ed al contorno.

Bibliografia

  1. [1]
    B. Budak andM. Z. Moskal,Classical solution of the multidimensional multifront Stefan problem, Soviet Math. Dokl., Vol. 10 (1969), #5, pp. 1043–1046.Google Scholar
  2. [2]
    J. R. Cannon,A priori estimate for continuation of the solution of the heat equation in the space variable, Ann. Mat. Pura Appl. 66 (1964), pp. 377–388.Google Scholar
  3. [3]
    J. R. Cannon, andJim Douglas, Jr.,The stability of the boundary in a Stefan problem, Ann. della Scuola normale Superiore di Pisa, Vol. XXI, Fasc I (1967), pp. 83–91.MathSciNetGoogle Scholar
  4. [4]
    J. R. Cannon andC. D. Hill,Existence, uniqueness, stability, and monotone dependence in a Stefan problem for the heat equation, J. of Math. and Mech. Vol. 17 (1967), pp. 1–20.MathSciNetGoogle Scholar
  5. [5]
    J. R. Cannon, Jim Douglas, Jr, andC. D. Hill,A multi-boundary Stefan problem and the disappearance of phases, J. of Math. and Mech., Vol. 17, (1967), pp. 21–34.MathSciNetGoogle Scholar
  6. [6]
    J. R. Cannon andC. D. Hill,Remarks on a Stefan problem, J. of Math. and Mech., Vol. 17, (1967), pp. 433–442.MathSciNetGoogle Scholar
  7. [7]
    —— ——,On the infinite differentiability of the free boundary in a Stefan problem, J. of Math. Anal and Appl., Vol. 22, (1968), pp. 385–397.CrossRefMathSciNetGoogle Scholar
  8. [8]
    Avner Friedman,The Stefan problem in several space variables, Transaction of the A.M.S., Vol. 133, (1968), pp. 51–87.CrossRefzbMATHGoogle Scholar
  9. [9]
    —— ——,One dimensional Stefan problems with nonmonotone free boundary, Transactions of the A.M.S., Vol. 133, (1968), pp. 89–114.CrossRefzbMATHGoogle Scholar
  10. [10]
    —— ——,Correction to « the Stefan problem in several space variables », Transaction of A.M.S., Vol. 142, (1969), p. 557.CrossRefzbMATHGoogle Scholar
  11. [11]
    M. Gevrey,Sur les équations aux dérivées partielles du type parabolique, J. Math. (ser. 6), 9 (1913), pp. 305–471.Google Scholar
  12. [12]
    S. L. Kamenomostskaja,On Stefan’s problem, Mat. Sb. 53 (95) (1965), pp. 485–513.MathSciNetGoogle Scholar
  13. [13]
    Jiang Li-shang,Existence and differentiability of the solution of a two-phase Stefan problem for quasi-linear parabolic equations, Chinese Math. 7 (1965), pp, 481–496.Google Scholar
  14. [14]
    D. Quilghini,Una analisi fisico-matematica del processo del cambiamento di fase, Ann. di Mat. pura ed applicata, (IV), Vol. LXVII (1965), pp. 33–74.CrossRefMathSciNetGoogle Scholar
  15. [15]
    L. I. Rubinstein,Two-phase Stefan problem on a segment with one-phase initial state of thermoconductive medium, Ucen, Zap. Lat. Gos. Univ. Stucki 58 (1964), pp. 111–148.zbMATHGoogle Scholar
  16. [16]
    G. Sestini,Esistenza ed unicità nel problema di Stefan relativo a campi dotati di simmetria, Rivista Mat. Univ. Parma 3 (1952), pp. 103–113.zbMATHMathSciNetGoogle Scholar

Copyright information

© Nicola Zanichelli Editore 1971

Authors and Affiliations

  • John R. Cannon
    • 1
  • Mario Primicerio
    • 2
  1. 1.Mathematics DepartmentUniversity of Texas at AustinUSA
  2. 2.Istituto Matematico « U. Dini »Università di FirenzeFirenzeItaly

Personalised recommendations