Advertisement

Annali di Matematica Pura ed Applicata

, Volume 90, Issue 1, pp 75–85 | Cite as

A class of polynomials defined by generalized Rodrigues’ formula

  • H. M. Srivastava
  • J. P. Singhal
Article

Summary

The present paper incorporates a systematic study of linear, bilinear and bilateral generating functions, pure as well as mixed recurrence relations, and the differential equations associated with the class of polynomials {G n α (x, r, p, k)|n=0, 1, 2, ... }, defined by (1.3) below, which evidently provides an elegant generalization of the various recent extensions of the classical Hermite and Laguerre polynomials.

Keywords

Differential Equation Generate Function Systematic Study Recurrence Relation Laguerre Polynomial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [1]
    W. A. Al-Salam,Operational representations for the Laguerre and other polynomials Duke Math. J.,31 (1964), pp. 127–142.CrossRefzbMATHMathSciNetGoogle Scholar
  2. [2]
    A. M. Chak,A class of polynomials and a generalization of Stirling numbers, Duke Math. J.,23 (1956), pp. 45–56.CrossRefzbMATHMathSciNetGoogle Scholar
  3. [3]
    S. K. Chatterjea,On a generalization of Laguerre polynomials, Rend. Sem. Mat. Univ. Padova,34 (1964), pp. 180–190.zbMATHMathSciNetGoogle Scholar
  4. [4]
    Maurice deDuffahel,Some polynomials analogous to Abel’s polynomials, Bull. Calcutta Math. Soc.,28 (1936), pp. 151–158.Google Scholar
  5. [5]
    A. Erdélyi et al.,Higher transcendental functions, Vol. I, McGraw-Hill, New York, 1953.Google Scholar
  6. [6]
    —— ——,Higher trascendental functions, Vol. II, McGraw-Hill, New York, 1953.Google Scholar
  7. [7]
    H. W. Gould andA. T. Hopper,Operational formulas connected with two generalizations of Hermite polynomials, Duke Math. J.,29 (1962), pp. 51–63.CrossRefMathSciNetGoogle Scholar
  8. [8]
    P. Humbert,Sur certains polynomes orthogonaux, C. R. Acad. Sci. Paris,176 (1923), pp. 1282–1284.zbMATHGoogle Scholar
  9. [9]
    F. J. Palas,A Rodrigues’ formula, Amer. Math. Monthly,66 (1959), pp. 402–404.CrossRefzbMATHMathSciNetGoogle Scholar
  10. [10]
    E. D. Rainville,Special Functions, Macmillan, New York, 1960.Google Scholar
  11. [11]
    R. P. Singh andK. N. Srivastava,A note on generalized Laguerre polynomials, Ricerca (Napoli) (2),14 (1963), pp. 11–21; See also Errata, ibid. (2),15 (1964), pag. 63.MathSciNetGoogle Scholar
  12. [12]
    J. P. Singhal andC. M. Joshi,On the unification of generalized Hermite and Laguerre polynomials, to appear.Google Scholar
  13. [13]
    H. M. Srivastava,An extension of the Hille-Hardy formula, Math. Comp.,23 (1969), pp. 305–311.CrossRefzbMATHMathSciNetGoogle Scholar
  14. [14]
    J. G. Steffenson,On a class of polynomials and their applications to actuarial problems, Skand. Aktuarietidskr., (1928), pp. 75–97.Google Scholar
  15. [15]
    L. Toscano,Funzioni generatrici di particolari polinomi di Laguerre e di altri da essi dipendenti, Boll. Un. Mat. Ital. (3),7 (1952), pp. 160–167.zbMATHMathSciNetGoogle Scholar

Copyright information

© Nicola Zanichelli Editore 1971

Authors and Affiliations

  • H. M. Srivastava
    • 1
  • J. P. Singhal
    • 1
  1. 1.VictoriaCanada

Personalised recommendations