Annali di Matematica Pura ed Applicata

, Volume 106, Issue 1, pp 375–386 | Cite as

Coomologie rigide e coomologie continue

  • F. Cacciafesta


We establish some relations of Lawson’s axiom of « point-tautness » for general cohomologies with the axion of continuity, and with strictly related topics as the general reduction and extension properties, and the concept of « tautly imbedded set ». Further, some applications of point-tautness for cohomologies over a space are given.


  1. [1]
    P. Bacon,Axioms for Cech cohomology of paracompacta, preprint.Google Scholar
  2. [2]
    A. Dold,Lecture notes on general cohomology, mimeographed notes, Aarhus Univ. (1968).Google Scholar
  3. [3]
    A. Dold,Chern classes in general cohomology, INAM, Symp. Math.,5 (1970), pp. 385–410.Google Scholar
  4. [4]
    A. Dold,Lectures on algebraic topology, Springer, Berlino (1972).Google Scholar
  5. [5]
    S. Eilenberg - N. Steenrod,Foundations of algebraic topology, Princeton Univ. Press (1952).Google Scholar
  6. [6]
    J. Keesee,On the homotopy axiom, Ann. of Math.,54 (1951), pp. 247–249.CrossRefzbMATHMathSciNetGoogle Scholar
  7. [7]
    J. Lawson,Comparison of taut cohomologies, Aeq. Math.,9 (1973), pp. 201–209.CrossRefzbMATHMathSciNetGoogle Scholar
  8. [8]
    J. Milnor,On axiomatic homology theory, Pac. J. Math.,12 (1962), pp. 337–341.zbMATHMathSciNetGoogle Scholar
  9. [9]
    H. Schubert,Topologie, Teubner, Stoccarda (1964).Google Scholar
  10. [10]
    E. Spanier,Cohomology theory for general spaces, Ann. of Math.,49 (1948), pp. 407–427.CrossRefzbMATHMathSciNetGoogle Scholar
  11. [11]
    E. Spanier,Algebraic topology, McGraw-Hill, New York (1966).Google Scholar
  12. [12]
    A. Wallace,The map excision theorem, Duke Math. J.,19 (1952), pp. 177–182.CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata 1975

Authors and Affiliations

  • F. Cacciafesta
    • 1
  1. 1.Roma

Personalised recommendations