Advertisement

Annali di Matematica Pura ed Applicata

, Volume 106, Issue 1, pp 353–374 | Cite as

On the stability of couette-benard M.H.D. flows of binary mixtures

  • A. Belleni-Morante
  • M. Maiellaro
Article
  • 27 Downloads

Summary

We study a class of Couette-Benard M.H.D. flows of a binary mixture in a plane slant layer. By using the theory of semigroups of linear bounded transformations, we prove that the initial-value problem forfinite perturbations has one and only one solution belonging to a suitable Banach space. Finally, we show the inconditionated asymptotical stability in norm of such a solution.

Keywords

Banach Space Binary Mixture Asymptotical Stability Suitable Banach Space Plane Slant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Sunto

Si studia una classe di moti magnetoidrodinamici alla Couette-Benard di una miscela fluida binaria in uno strato piano obliquo e, con le tecniche della teoria dei semigruppi di trasformazioni lineari limitate, si dimostra, in un opportuno spazio di Banach, l’esistenza e l’unicità della soluzione del problema di evoluzione per perturbazionifinite e l’incondizionata stabilità asintotica in norma di tali moti.

References

  1. [1]
    I. G. Shaposhnikov,On the theory of convectional phenomena in a binary mixture, P.M.M., (5)17 (1953), pp. 604–606.Google Scholar
  2. [2]
    B. A. Vertheim,On the conditions of appearance of convection in a binary mixture, P.M.M., (6)19 (1955), pp. 745–750.Google Scholar
  3. [3]
    G. Z. Gershuni -E. M. Zhukhovitskii,On the convectional instability of a two-component mixture in a gravity field, P.M.M., (2)27 (1963), pp. 441–452.MathSciNetzbMATHGoogle Scholar
  4. [4]
    M. E. Stern,The « Salt-Fountain » and thermohaline convection, Tellus,12 (1960), pp. 172–175.CrossRefGoogle Scholar
  5. [5]
    Gosta Walin,Note on the stability of water stratified by both salt and heat, Tellus, (3)16 (1964), pp. 389–393.Google Scholar
  6. [6]
    D. A. Nield,The thermohaline Rayleigh-Jeffreys problem, J. Fluid Mech., (3)29 (1967), pp. 545–558.CrossRefGoogle Scholar
  7. [7]
    W. S. Saric -Z. Lavan,Stability of circular-Couette flow of binary mixture, J. Fluid Mech., (1)47 (1971), pp. 65–80.CrossRefzbMATHGoogle Scholar
  8. [8]
    L. D. Landau -E. M. Lifshitz,Fluid Mechanics, Pergamon Press, London (1959).Google Scholar
  9. [9]
    Chia-Shun Yih,Dynamics of nonhomogeneous fluids, Series in Advanced Mathematics and Theotetical Physics, MacMillan Company, New York (1965).Google Scholar
  10. [10]
    S. Chandrasekhar,Hydrodynamic and hydromagnetic stability, Clarendon Press, Oxford (1961).zbMATHGoogle Scholar
  11. [11]
    C. C. Lin,The theory of hydrodynamic stability, University Press, Cambridge (1967).Google Scholar
  12. [12]
    J. Serrin,On the stability of viscous fluid motions, Arch. Rat. Mech. Anal.,3 (1959), pp. 1–13.CrossRefzbMATHMathSciNetGoogle Scholar
  13. [13]
    D. D. Joseph,Non linear stability of the Boussinesq equations by the method of energy, Arch. Rat. Mech. Anal.,22 (1966), pp. 163–184.CrossRefzbMATHMathSciNetGoogle Scholar
  14. [14]
    S. Rionero,Sulla stabilità asintotica in media in magnetoidrodinamica, Annali di Matem., (4)76 (1967), pp. 75–92.CrossRefzbMATHMathSciNetGoogle Scholar
  15. [15]
    S. Rionero,Metodi variazionali per la stabilità asintotica in media in magnetoidrodinamica, Ann. di Mat. pura e appl., (4)78 (1968), pp. 339–364.zbMATHMathSciNetGoogle Scholar
  16. [16]
    R. Nardini,Su un caso particolare di stabilità in media della magnetoidrodinamica Ann. di Mat. pura e appl. (4)84 (1970), pp. 95–100.zbMATHMathSciNetGoogle Scholar
  17. [17]
    S. Rionero,Metodi variazionali per la stabilità asintotica in media in magnetoidrodinamica non isoterma, Rend. Acc. Sc. Fis. Napoli, (4)35 (1968), pp. 100–116.MathSciNetGoogle Scholar
  18. [18]
    S. Rionero,Sulla stabilità magnetofluidodinamica non lineare asintotica in media in presenza di effetto Hall, Ricerche di Matematica, (2)20 (1971), pp. 285–296.zbMATHMathSciNetGoogle Scholar
  19. [19]
    S. P. Bhattacharyya -P. C. Jain,Hydrodynamic Stability in the Presence of a Magnetic Field, Arch. Rat. Mech. Anal.,44 (1971–1972), pp. 281–295.MathSciNetGoogle Scholar
  20. [20]
    M. Maiellaro,Su due casi particolari di stabilità asintotica esponenziale in media in magnetoidrodinamica, Atti Sem. Mat. Fis. Univ. Modena,20 (1971), pp. 105–114.Google Scholar
  21. [21]
    C. C. Shir -D. D. Joseph,Convective Instavility in a Temperature and Concentration Field, Arch. Rat. Mec. Anal.,30 (1968), pp. 38–80.MathSciNetzbMATHGoogle Scholar
  22. [22]
    D. D. Joseph,Uniqueness Criteria for the Conduction-Diffusion Solution of the Boussinesq Equations, Arch. Rat. Mech. Anal.,35 (1970), pp. 169–177.MathSciNetGoogle Scholar
  23. [23]
    D. D. Joseph,Global Stability of the Conduction-Diffusion Solution, Arch. Rat. Mech. Anal.,36 (1970), pp. 285–292.CrossRefzbMATHMathSciNetGoogle Scholar
  24. [24]
    S. Rionero,Sulla stabilità asintotica in media nella dinamica dei miscugli fluidi, Boll. U.M.I., (4)4 (1971), pp. 364–373.zbMATHMathSciNetGoogle Scholar
  25. [25]
    M. Maiellaro,Sulla stabilità non lineare in media dei moti alla Couette-Benard di una miscela fluida binaria, Atti Sem. Mat. Fis. Univ. Modena,22 (1973), pp. 250–268.MathSciNetGoogle Scholar
  26. [26]
    T. Kato,Perturbation Theory for Linear Operators, Springer Verlag, Berlino (1966).zbMATHGoogle Scholar
  27. [27]
    E. Hille,Functional Analysis and Semigroups, A.M.S., Coll. Pub. 31, Providence, R.I., (1948).Google Scholar
  28. [28]
    S. L. Sobolev,Applications of Functional Analysis in Mathematical Physics, A.M.S., Providence, R.I., (1963).zbMATHGoogle Scholar
  29. [29]
    A. Belleni-Morante,Neutron Transport in a Non Uniform Slab with Generalized Boundary Conditions, J. Math. Phys.,11 (1970), pp. 1553–1558.CrossRefzbMATHMathSciNetGoogle Scholar
  30. [30]
    I. Vidav,Spectra of Perturbed Semigroups with Applications to Transport Theory, J. Math. Anal. Appl.,30 (1970), pp. 264–279.CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata 1975

Authors and Affiliations

  • A. Belleni-Morante
    • 1
  • M. Maiellaro
    • 1
  1. 1.Bari

Personalised recommendations