## Summary

Conditions are studied under which a continued fraction has the property that for each positive integer k, its sequence of approximants is a finite linear combination of convergent sequences having nonnegative k-th differences.

## References

- [1]
D. F. Dawson,

*Continued fractions with absolutely convergent even or odd part*, Canadian J. Math.,**11**(1959), pp. 131–140. - [2]
D. F. Dawson,

*Mapping properties of matrix summability methods*, Annali Mat. Pura Appl., (4),**88**(1971), pp. 1–8. - [3]
D. F. Dawson,

*Matrix methods which sum sequences of bounded k-variation*, Pub. Inst. Math. (Beograd),**12**(1971), pp. 37–40. - [4]
D. F. Dawson,

*Remarks on some convergence conditions for continued fractions*, Proc. Amer. Math. Soc.,**18**(1967), pp. 803–805. - [5]
D. F. Dawson,

*Variation properties of sequences*, Mat. Vesnik,**6**(1969), pp. 437–441. - [6]
J. Farinha,

*Sur la convergence de φa*_{ i }/*l*, Portugal Math.,**13**(1954), pp. 145–148. - [7]
R. E. Lane -H. S. Wall,

*Continued fractions with absolutely convergent even and odd parts*, Trans. Amer. Math. Soc.,**67**(1949), pp. 368–380. - [8]
W. T. Scott -H. S. Wall,

*A convergence theorem for continued fractions*, Trans. Amer. Math. Soc.,**47**(1940), pp. 155–172. - [9]
W. J. Thron,

*Zwillingskonvergenzgebiete für Kettenbruche*1 +K(*a*_{ n }/*l) deren eines die Kreisscheibe |a*_{2n−1}*|<ϱ*^{2}*ist*, Math. Zeit.,**70**(1959), pp. 310–344. - [10]
H. S. Wall,

*Analytic theory of continued fractions*, New York, 1948.

## Author information

### Affiliations

## Additional information

*Dedicated to the memory of ProfessorH. S. Wall
*

Entrata in Redazione l’8 giugno 1974.

## Rights and permissions

## About this article

### Cite this article

Dawson, D.F. Continued fractions with restricted variation properties.
*Annali di Matematica* **106, **219–231 (1975). https://doi.org/10.1007/BF02415030

Issue Date:

### Keywords

- Positive Integer
- Linear Combination
- Continue Fraction
- Variation Property
- Convergent Sequence