Advertisement

Annali di Matematica Pura ed Applicata

, Volume 106, Issue 1, pp 95–117 | Cite as

Regolarità Lipschitziana per la soluzione di alcuni problemi di minimo con vincolo

  • M. Giaquinta
  • G. Modica
Article

Summary

We prove that solutions of some minimum problems with obstacles that may be on Θ, thin, or on the boundary, are Lipschitz-continuous.

Bibliografia

  1. [1]
    H. Beirao da Veiga,Proprietà di sommabilità e limitatezza per soluzioni di disequazioni variazionali ellittiche, Rend. Sem. Mat. Padova,46 (1971), pp. 141–171.MathSciNetGoogle Scholar
  2. [2]
    H. Beirao da Veiga,Sur la regularité des solutions de l’équation divA(x, u, ▽u)= =B(x, u, ▽u) avec des conditions aux limites unilaterales et mêlées, Thèse presentée à la Faculté des Sciences de Paris le 2juin 1971.Google Scholar
  3. [3]
    H. Beirao da Veiga,Sur la regularité des solutions de l’équation divA(x, u, ▽u)= =B(x, u, ▽u) avec des conditions aux limites unilaterales et mêlées, Ann. di Mat.,64 (1973).Google Scholar
  4. [4]
    H. Beirao da Veiga — F. Conti,Equazioni ellittiche non lineari con ostacoli sottili ..., Ann. Sc. Norm. Sup. Pisa,26 (1972).Google Scholar
  5. [5]
    H. Brezis — G. Stampacchia,Sur la regularité de la solution d’inequations elliptiques, Bulletin de la Soc. Math. de France,96 (1968).Google Scholar
  6. [6]
    G. Fichera,Un teorema generale di semicontinuità per gli integrali multipli e sue applicazioni alla fisica matematica, supplemento al vol.98 (1963–64) degli Atti della Accademia delle Scienze di Torino.Google Scholar
  7. [7]
    G. Fichera,Problemi elastostatici con vincoli unilaterali: il problema di Signorini con ambigue condizioni al contorno, Mat. Accad. Naz. Lincei, ser. 8,7 (1964).Google Scholar
  8. [8]
    M. Giaquinta,On the Dirichlet problem for surfaces of prescribed mean curvature, Manuscripta Math.,12 (1974), pp. 73–86.CrossRefzbMATHMathSciNetGoogle Scholar
  9. [9]
    M. GiaquintaL. Pepe,Esistenza e regolarità per il problema dell’area minima con ostacoli in n variabili, Ann. Sc. Norm. Sup. Pisa,25 (1971), pp. 481–507.MathSciNetGoogle Scholar
  10. [10]
    E. Giusti,Superfici minime cartesiane con ostacoli discontinui, Arch. Rational Mech. Anal.,40 (1971), pp. 251–267.CrossRefzbMATHMathSciNetGoogle Scholar
  11. [11]
    E. Giusti,Non-parametric minimal surfaces with discontinuous and thin obstacles, Arch. Rational Mech. Anal.,49 (1972), pp. 41–56.CrossRefzbMATHMathSciNetGoogle Scholar
  12. [12]
    E. Giusti,Boundary Behabior of non-parametric minimal surfaces, Indiana Un. Math. Journal,22 (1972), pp. 435–444.CrossRefzbMATHMathSciNetGoogle Scholar
  13. [13]
    E. Giusti,Maggiorazione a priori del gradiente, e regolarità delle superfici minime non parametriche con ostacoli, (in corso di stampa sui Symposia Mathematica, 1973).Google Scholar
  14. [14]
    P. H. HartmanG. Stampacchia,On some non linear elliptic differential-functional equations, Acta Math.,115 (1966), pp. 271–310.CrossRefMathSciNetGoogle Scholar
  15. [15]
    O. A. LadyzhenskayaN. N. Ural’tseva,Linear and quasilinear elliptic equations, Academic Press, New York, 1968.Google Scholar
  16. [16]
    H. LewyG. Stampacchia,On the regularity of the solutions of a variational inequality, Comm. Pure Appl. Math.,22 (1969), pp. 153–188.MathSciNetGoogle Scholar
  17. [17]
    H. LewyG. Stampacchia,On existence and smoothness of solutions of some non-coercive variational inequalities, Arch. Rational Mech. Anal.,41 (1971), pp. 241–253.CrossRefMathSciNetGoogle Scholar
  18. [18]
    J. L. LionsG. Stampacchia,Variational inequalities, Comm. Pure Appl. Math.,20 (1967), pp. 493–519.MathSciNetGoogle Scholar
  19. [19]
    C. B. Morrey,Multiple Integrals in the Calculus of Variation, Springer-Verlag, 1966.Google Scholar
  20. [20]
    J. C. C. Nitsche,Variational problems with inequalities as boundary conditions ..., Arch. Rat. Mech. Anal.,35 (1969), pp. 83–113.CrossRefzbMATHMathSciNetGoogle Scholar
  21. [21]
    G. Stampacchia,On some regular multiple integral problems in the calculus of variations, Comm. Pure and Appl. Math.,16 (1963), pp. 383–422.zbMATHMathSciNetGoogle Scholar
  22. [22]
    G. Stampacchia,Equations elliptiques du second ordere à coefficients discontinues, Seminaire sur les équations aux derivées partielles, College de France, 1963–64.Google Scholar
  23. [23]
    G. StampacchiaA. Vignoli,A remark on variational inequalities ..., Boll. U.M.I., (4)5 (1972), pp. 123–131.MathSciNetGoogle Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata 1975

Authors and Affiliations

  • M. Giaquinta
    • 1
  • G. Modica
    • 1
  1. 1.Istituto di Matematica dell’UniversitàPisa

Personalised recommendations