Advertisement

Scattering theory for second order elliptic operators

  • 35 Accesses

  • 4 Citations

Summary

We find sufficient conditions on a perturbation of the Laplacian to insure that the wave operators exist and are complete. Our method allows us to obtain new results on this topic while recapturing results previously known.

References

  1. [1]

    T. Kato - S. T. Kuroda,Theory of simple scattering and eigenfunction expansions, inFunctional Analysis and Related Fields, Springer, 1970, pp. 99–131.

  2. [2]

    T. Kato -S. T. Kuroda,The abstract theory of scattering, Rocky Mountain J. Math.,1 (1971), pp. 127–171.

  3. [3]

    T. Kato,Wave operators and similarity of non-self-adjoint operators, Math. Ann.,162 (1966), pp. 258–279.

  4. [4]

    T. Kato,Perturbation Theory for Linear Operators, Springer, 1966.

  5. [5]

    T. Kato,Proc. Conf. Functional Analysis and Related Topics, Tokyo Univ. Press, 1970, pp. 206–215.

  6. [6]

    S. T. Kuroda,Some remarks on scattering for Schrödinger operators, J. Fac. Sci. Univ. Tokyo,17 (1970), pp. 315–329.

  7. [7]

    S. T. Kuroda,Scattering theory for differential operators, I and II, J. Math. Soc. Japan,25 (1973), pp. 75–104, 222–234.

  8. [8]

    Y. M. Berezanskii,Expansions in Eigenfunctions of self-adjoint Operators, Amer. Math. Soc., Providence, 1968.

  9. [9]

    T. Ikebe,Eigenfunction expansions associated with the Schrödinger operator and their applications to scattering theory, Arch. Rat. Mech. Anal.,5 (1960), pp. 1–34.

  10. [10]

    P. Alsholm -G. Schmidt,Spectral and scattering theory for Schrödinger operators, ibid.,40 (1971), pp. 281–311.

  11. [11]

    P. A. Rejto,On partly gentle perturbations, III, J. Math. Anal. Appl.,27 (1969), pp. 21–67.

  12. [12]

    V. Greifenegger - K. Jörgens - J. Weidmann - M. Winkler,Strutheorie für Schrödinger. Operatoren, to appear.

  13. [13]

    B. Simon,Quantum Mechanics for Hamiltonians Defined as Quadratic Forms, Princeton Univ. Press, 1971.

  14. [14]

    M. Schechter,Spectra of Partial Differential Operators, North-Holland, Amsterdam 1971.

  15. [15]

    M. Schechter,Hamiltonians for singular potentials, Indiana Univ. Math. J.,22 (1972), pp. 483–503.

  16. [16]

    M. Schechter - I. Bulka, to appear.

  17. [17]

    R. Beals,On spectral theory and scattering for elliptic operators with singular potentials, Report, Math. Dept., Yale University, 1969.

  18. [18]

    M. S. Birman,Scattering problems for differential operators with constant coefficients, Funk. Anal. Publ.,3 (1969), pp. 1–16.

  19. [19]

    S. Agmon,Lecture at the Mathematics Research Institute, Oberwolfach, 1971.

  20. [20]

    E. M. Stein -G. Weiss,Interpolation of operators with change of measures, Trans. Amer. Math. Soc.,87 (1958), pp. 159–172.

  21. [21]

    S. Bochner,Lectures on Fourier Integrals, Annals of Mathematics Studies, Princeton University Press, 1959.

  22. [22]

    M. Schechter,Principles of Functional Analysis, Academic Press, New York, 1971.

  23. [23]

    M. Schechter,Scattering theory for elliptic operators of arbitrary order, Comm. Math. Helv.,49 (1974), pp. 84–113.

  24. [24]

    M. Thompson,Eigenfunction expansions and scattering theory for perturbed elliptic partia differential equations, Comm. Pure Appl. Math.,15 (1972), pp. 499–532.

  25. [25]

    E. C. Titchmarsh,Eigenfunction Expansions Associated with Second-Order Differential Equations, II, Oxford, Clarendon Press, 1958.

  26. [26]

    G. N. Watson,A Treatise on the Theory of Bessel Functions, Cambridge University Press, 1944.

  27. [27]

    D. W. Thoe,Eigenfunction Expansions associated with Schrödinger operators in R n,n ⩾ 4, Arch. Rat. Mech. Anal.,26 (1967), pp. 335–356.

Download references

Author information

Additional information

Entrata in Redazione il 16 gennaio 1974.

This research was partially supported by a N.S.F. Grant.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schechter, M. Scattering theory for second order elliptic operators. Annali di Matematica 105, 313 (1975) doi:10.1007/BF02414936

Download citation

Keywords

  • Elliptic Operator
  • Wave Operator
  • Order Elliptic Operator