# Coordinate theorems for affine Hjelmslev planes

• 25 Accesses

• 7 Citations

## Summary

It is shown that an affine Hjelmslev plane ℋ is a translation plane if and only if each of its coordinate biternary rings B=〈k, T, T0, 0, 1〉 are linear. Addition and multiplication in the ternary ring 〈k, T, 0, 1〉 are defined by a+b=T(a, 1, b) and a·b= =T(a, b, 0), respectively, and it is proved that every biternary ring of a translation plane has the additional properties that 〈k,+〉 is an abelian group 〈k, +, ·〉 is right distributive, and T(a, 1, b)=T0(a, 1, b). Moreover, if a single linear biternary ring of ℋ has these three properties, then ℋ is a translation plane. It is shown that a translation plane is Desarguesian if and only if it has a linear biternary ring such that T=T0 and 〈k, +, ·〉 is an affine Hjelmslev ring. Hessenberg’s theorem for affine Hjelmslev planes is proved, and a special configurational condition which is equivalent to the commutativity of multiplication in each biternary ring is introduced.

## References

1. [1]

E. Artin,Coordinates in affine geometry, Rep. Math. Coll.,2 (2) (1940), pp. 15–20.

2. [2]

E. Artin,Geometric algebra, Interscience Publishers Inc., New York (1957).

3. [3]

B. Artmann,Uniforme Hjelmslev-Ebenen und Modulare Verbände, Math. Z.,111 (1969), pp. 15–45.

4. [4]

P. Y. Bacon,Coordinatized H-planes, Ph. D. thesis, Univ. of Florida (1974).

5. [5]

V. K. Cyganova,An H-ternar of the Hjelmslev affine plane (Russian), Smolensk. Gos. Ped. Inst. Učen. Zap.,18 pp. 44–69.

6. [6]

D. A. Drake,Coordinatization of H-planes by H-modules, Math. Z.,115 (1970), pp. 79–103.

7. [7]

G. Grätzer,Universal algebra, D. Van Nostrand Company Inc., New York (1960).

8. [8]

M. Hall,Projective planes, Trans. Amer. Math. Soc.,54 (1943), pp. 229–277.

9. [9]

W. Klingenberg,Beziehungen zwischen einigen affinen Schliessungssätzen, Abh. Math. Sem. Univ. Hamburg,18 (1952), pp. 120–143.

10. [10]

W. Klingenberg,Projecktive und affine Ebenen mit Nachbarelementen, Math. Z.,60 (1954), pp. 384–406.

11. [11]

W. Klingenberg,Desarguessche Ebenen mit Nachbarelementen, Abh. Math. Sem. Univ. Hamburg,20 (1955), pp. 97–111.

12. [12]

J. W. Lorimer - N. D. Lane,Desarguesian affine H 6 elmslev planes, to appear in J. Reine Angew. Math.

13. [13]

J. W. Lorimer - N. D. Lane,Desarguesian affine H 6 elmslev planes, Mc Master Univ. Math. Report 55 (1973).

14. [14]

H. Lüneburg,Affine Hjelmslev-Ebenen mit transitiver Translationgruppe, Math. Z.,79 (1962), pp. 260–288.

15. [15]

E. Sperner,Affine Räume mit schwacher Incidenz und zugehörige algebraische Strukturen, J. Reine Angew. Math.,204 (1960), pp. 205–215.

## Author information

Entrata in Redazione il 16 ottobre 1973.

## Rights and permissions

Reprints and Permissions

Lorimer, J.W. Coordinate theorems for affine Hjelmslev planes. Annali di Matematica 105, 171–190 (1975). https://doi.org/10.1007/BF02414928