Advertisement

Free boundary problems in the theory of fluid flow through porous media: Existence and uniqueness theorems

Summary

Elliptic free boundary problems in the theory of fluid flow through porous media are studied by a new method, which reduces the problems to variational inequalities: existence and uniqueness theorems are proved.

References

  1. [1]

    V. I. Aravin - S. A. Numerov,Theory of fluid flow in undeformable porous media, Jerusalem: Israel Program for scientific translations 1965.

  2. [2]

    S. Agmon -A. Douglis -L. Niremberg,Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, I. Comm. Pure Appl. Math.,12 (1959), pp. 623–727.

  3. [3]

    C. Baiocchi,Su un problema di frontiera libera connesso a questioni di idraulica, Ann. di Mat. pura e appl. (IV) XCII, (1972) pp. 107–127; preliminary note on C.R. Acad. Sc. Paris,273 (1971,) pp. 1215–1217.

  4. [4]

    C. Baiocchi - V. Comincioli -L. Guerri -G. Volpi,Free boundary problems in the theory of fluid flow through porous media: numerical approach, Calcolo, vol. X, 1973.

  5. [5]

    H. Brezis -G. Stampacchia,Sur la régularité de la solution d'inéquations elliptiques, Bull. Soc. Math. France,96 (1968), pp. 153–180.

  6. [6]

    F. Brezzi,Sull'analisi numerica del problema di Dirichlet nei poligoni (to appear).

  7. [7]

    M. Chicco,Principio di massimo per soluzioni di problemi al contorno misti per equazioni ellittiche di tipo variazionale, Boll. U.M.I., (4),3 (1970), pp. 384–394.

  8. [8]

    D. Citrini,Studio elementare delle falde freatiche sjocianti a mare, Istituto Lombardo (Rend. Sc.), A94 (1960), pp. 709–728.

  9. [9]

    V. Comincioli - L. Guerri - G. Volpi,Analisi numerica di un problema di frontiera libera connesso col moto di un fluido attraverso un mezzo poroso, Publication no. 17 of Laboratorio di Analisi Numerica del C.N.R., Pavia (1971).

  10. [10]

    C. W. Cryer,On the approximate solution of free boundary problems using finite differences, J. Assoc. Comput. Mach.,17, no. 3 (1970), pp. 397–411.

  11. [11]

    G. Duvaut -J. L. Lions,Les inéquations en Mécanique et en Physique, Dunod, Paris, 1972.

  12. [12]

    G. Fichera,Sul problema della derivata obliqua e sul problema misto per l'equazione di Laplace, Boll. U.M.I., (3),7 (1952), pp. 367–377.

  13. [13]

    G. Fichera,Una introduzione alla teoria delle equazioni integrali singolari, Rend. Mat. pura e appl.,17 (1958), pp. 82–119.

  14. [14]

    E. Gagliardo,Proprietà di alcune classi di funzioni in più variabili, Ricerche di Mat.,7 (1958), pp. 102–137;8 (1959), pp. 24–51.

  15. [15]

    R. Glowinski - J. L. Lions - R. Tremolières,Résolution numérique des inéquations de la Mécanique et de la Physique, Forthcoming book, Dunod, Paris.

  16. [16]

    R. E. Glover,The pattern fresh-water flow in a coastal aquifer, Journal of Geophysical Research, April 1969.

  17. [17]

    P. Grisvard,Equations différentielles abstraites, Ann. Sc. Ec. Norm. Sup., Paris, (4),2 (1969), pp. 311–395.

  18. [18]

    P. Grisvard,Alternative de Fredholm relative au problème de Dirichlet dans un polygone ou un polyèdre, Boll. U.M.I., (4),5 (1972), pp. 132–164.

  19. [19]

    M. E. Harr,Groundwater and seepage, New York: McGraw-Hill, 1962.

  20. [20]

    H. R. Henry,Salt intrusion into fresh-water aquifers, Journal of Geophysical Research, November 1959.

  21. [21]

    H. Lewy -G. Stampacchia,On the regularity of the solution of a variational inequality, Comm. P.A.M.,22 (1969), pp. 153–188.

  22. [22]

    R. W. Jeppson,Free-surface flow through heterogeneous porous media, Journal of the Hydraulics Division Proceedings of the American Society of Civil Engineers,95 (January 1969), pp. 364–381.

  23. [23]

    R. W. Jeppson,Seepage from channels through layered porous mediums, Water Resources Research,4, no 2 (1968), pp. 435–445.

  24. [24]

    A. Lienard,Problème plan de la dérivée oblique dans la théorie du potentiel, J. Ecole Polytechnique (1937), pp. 35–226.

  25. [25]

    J. L. Lions -G. Stampacchia,Variational inequalities, Comm. Pure Appl. Math.,20 (1967), pp. 493–519.

  26. [26]

    J. L. Lions,Quelques méthodes de resolution de problèmes aux limites non linéaires, Dunod-Gauthier-Villars, Paris, 1969.

  27. [27]

    J. L. Lions - E. Magenes,Non-homogeneous boundary value problems and applications, Vol. I–III, Grundlehren B. 181–183, Springer, 1972, 1973.

  28. [28]

    E. Magenes,Su alcuni problemi ellittici di frontiera libera connessi con il comportamento dei fluidi nei mezzi porosi, Symposia Math. I.N.A.M., Roma, Vol. X (1972), 265–279.

  29. [29]

    E. Magenes -G. Stampacchia,I problemi al contorno per le equazioni differenziali di tipo ellittico, Ann. Sc. Norm. Sup. Pisa,12 (1958), pp. 247–357.

  30. [30]

    U. Maione - S. Franzetti,Unconfined flow downstream of an homogeneous earth dam with impervious sheetpiles, Thirteenth Congress of the International Association for Hydraulic research Kyoto (1969), pp. 191–204.

  31. [31]

    U. Maione,Sul moto di filtrazione a superficie libera a valle di diaframmi impermeabili, Publication no. 3, Istituto di Idraulica, Pavia, 1971.

  32. [32]

    P. Mauersberger,A variational principle for steady state groundwater flow with a free surface, Pageoph.,60 (1965), pp. 101–106.

  33. [33]

    S. G. Mikhlin,Integral equations, Pergamon Press, 1957.

  34. [34]

    C. Miranda,Su un problema di frontiera libera, Symposia Math.,2 (1968), pp. 71–83.

  35. [35]

    N. I. Muskhelishvili,Singular integral equations, Groningen, 1953.

  36. [36]

    M. Muskat,The flow of homogeneous fluids through porous media, New York, McGraw-Hill, 1937.

  37. [37]

    J. Necas,Les méthodes directes dans la théorie des équations elliptiques, Prague, 1967.

  38. [38]

    S. T. Neumann -P. A. Witherspoon,Finite element method of analyzing steady seepage with a free surface, Water Resources Research,6, no. 3 (1970), pp. 889–897.

  39. [39]

    S. T. Neumann,Variational principles for confined and unconfined flow of groundwater, Water Resources Research,6, no. 5 (1970), pp. 1376–1387.

  40. [40]

    J. Peetre,Mixed problems for higher order elliptic equations in two variables, I e II, Ann. Sc. Norm. Sup. Pisa,15 (1961), pp. 337–353;17 (1963), pp. 1–12.

  41. [41]

    G. Prodi,Tracce sulla frontiera delle funzioni di Beppo Levi, Rend. Sem. Mat. Padova,26 (1956), pp. 36–60.

  42. [42]

    P. Ya. Polubarinova-Kochina,The theory of groundwater movement, Princeton University Press, Princeton, N. J., 1962.

  43. [43]

    A. Russo-Spena,Moti di filtrazione a superficie libera attraverso sistemi di stati filtranti di permeabilità diverse, L'Energia Elettrica, Milano,1 (1960), pp. 1–17.

  44. [44]

    L. Schwartz,Théorie des distributions, Hermann, Paris, 1966.

  45. [45]

    E. Shamir,Mixed boundary value problems for elliptic equation in the plane, the L p theory, Ann. Sc. Norm. Sup. Pisa,17 (1963), pp. 117–139.

  46. [46]

    E. Shamir,Regularization of mixed second order elliptic problems, Israel J. of. Math.,6 (1958), pp. 150–168.

  47. [47]

    R. V. Southwell,Relaxation methods in theoretical physics, Clarendon Press, Oxford, 1946.

  48. [48]

    G. Stampacchia,Formes bilinéaires coercitives sur les ensembles convexes, C.R. Acad. Sc.,258 (1964), pp. 4413–4416.

  49. [49]

    G. Stampacchia,Su un problema relativo alle equazioni di tipo ellittico del secondo ordine, Ricerche Mat.,5 (1956), pp. 3–24.

  50. [50]

    G. Stampacchia,Regularity of solutions of some variational inequalities, Proc. Symp. in pure Mat.,18, Part. I (1970), pp. 271–281.

  51. [51]

    G. Stampacchia,Variational inequalities, Proc. Nato, Venice (1968), pp. 101–192.

  52. [52]

    G. Talenti,Sulle equazioni integrali di Wiener-Hopf, Centro di Analisi Globale del C.N.R., Firenze, 1972.

  53. [53]

    G. Talenti,Sulle equazioni integrali di Wiener-Hopf, Boll. Un. Mat. Ital., IV, vol.7 (1973), suppl. fasc. 1, 18–118.

Download references

Additional information

Entrata in Redazione il 3 agosto 1972. Research supported by C.N.R. in the frame of the collaboration between L.A.N. of Pavia and E.R.A. 215 of C.N.R.S. and of Paris University.

« Laboratorio di Analisi Numerica del C.N.R. di Pavia » and « Università di Pavia ».

« Università di Pavia » and « G.N.A.F.A. del C.N.R. ».

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Baiocchi, C., Comincioli, V., Magenes, E. et al. Free boundary problems in the theory of fluid flow through porous media: Existence and uniqueness theorems. Annali di Matematica 97, 1–82 (1973). https://doi.org/10.1007/BF02414909

Download citation

Keywords

  • Porous Medium
  • Fluid Flow
  • Variational Inequality
  • Free Boundary
  • Boundary Problem