Biological Cybernetics

, Volume 67, Issue 4, pp 369–375 | Cite as

Coactivation of leg reflexes in the stick insect

  • H. Cruse
  • K. Dautenhahn
  • H. Schreiner


Each leg of a standing stick insect acts as a height controller. The leg contains several joints. Most of these joints are known to be controlled by feedback loops which are the basis of resistance reflexes (review Bässler 1983). This leads to the question of whether the resistance reflex of the whole leg can be understood as a simple, vectorial sum of the individual reflexes provided by the different joints, or whether additional properties emerge by simultaneous stimulation of several joints. Force measurements were performed while passively moving the middle leg tarsus of a fixed stick insect (Carausius morosus) stepwise to different positions. From the dynamic and static forces the torques developed by each joint were calculated. They were compared with the torques developed when only a single joint was moved by the same amount. The comparison shows that for a large range of positions there are no differences between both situations. Differences occur in two cases. First, the muscle system controlling the coxa-trochanter joint seems to be more strongly excited when the entire leg is moved than when only the one joint is moved. This change increases the linearity of the whole system for small deviations from the zero position. Second, the torque developed by the extensor tibiae system for negative steps (corresponding to increased body height), and the levator of coxa and trochanter for positive steps, decreases rather than increases when the whole leg is moved to extreme positions. This contributes to a decrease in the slope of the force-height characteristic and thus to a more non-linear behaviour of the whole system for the extreme positions. It is well known that the amplification factors of resistance reflexes in the leg show a large variation (Bässler 1972a; Kittmann 1991). Our results indicate that any change of the amplification factor influences the reflexes in all leg joints in the same way.


Torque Amplification Factor Extreme Position Muscle System Stick Insect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ayers JL, Davis WJ (1977) Neuronal control of locomotion in the lobster, Homarus americanus. II. Types of walking leg reflexes. J Comp Physiol 115:29–46CrossRefGoogle Scholar
  2. Ayers JL, Davis WJ (1978) Neuronal control of locomotion in the lobster, Homarus americanus. III. Dynamic organization of walking leg reflexes. J Comp Physiol 123:289–298CrossRefGoogle Scholar
  3. Bässler U (1965) Proprioreceptoren am Subcoxal- und Femur-Tibia-Gelenk der Stabheuschrecke und ihre Rolle bei der Wahrnehmung der Schwerkraftrichtung. Kybernetik 2:168–193Google Scholar
  4. Bässler U (1972a) Der Regelkreis des Kniesehnenreflexes bei der StabheuschreckeCarausius morosus: Reaktionen auf passive Bewegungen der Tibia. Kybernetik 12:8–20CrossRefPubMedGoogle Scholar
  5. Bässler U (1972b) Der “Kniesehnenreflex” beiCarausius morosus: Übergangsfunktion und Frequenzgang. Kybernetik 11:32–50CrossRefPubMedGoogle Scholar
  6. Bässler U (1977) Sensory control of leg movement in the stick insectCarausius morosus. Biol Cybern 25:61–72CrossRefPubMedGoogle Scholar
  7. Bässler U (1983) Neural basis of elementary behavior in stick insects. Springer, Berlin Heidelberg New YorkGoogle Scholar
  8. Clarac F (1977) Motor coordination in crustacean limbs. In: Hoyle G (ed) Identified neurons and behavior of arthropods. Plenum Press, New York pp 167–186Google Scholar
  9. Cruse H (1976a) The control of the body position in the stick insect (Carausius morosus), when walking over uneven surfaces. Biol Cybern 24:25–33CrossRefGoogle Scholar
  10. Cruse H (1976b) On the function of the legs in the free walking stick insectCarausius morosus. J Comp Physiol 112:235–262CrossRefGoogle Scholar
  11. Cruse H, Riemenschneider D, Stammer W (1989) Control of body position of a stick insect standing on uneven surfaces. Biol Cybern 61:71–77CrossRefGoogle Scholar
  12. Dautenhahn K, Cruse H (1990) Resistance reflexes in the leg of an insect: is the whole more than the sum of its parts? In: Elsner N, Roth G (eds) Brain-perception-cognition Proceed. of the 18th Göttingen Neurobiology conference, 55, Thieme, Stuttgart New YorkGoogle Scholar
  13. Delcomyn F (1971) Computer aided analysis of a locomotor leg reflex in the cockroach. Z Vergl Physiol 74:427–445CrossRefGoogle Scholar
  14. Graham D (1985) Influence of coxa-thorax joint receptors on retractor motor-output during walking inCarausius morosus. J Exp Biol 114:131–139Google Scholar
  15. Graham D, Wendler G (1981) The reflex behaviour and innervation of the tergocoxal retractor muscles of the stick insectCarausius morosus. J Comp Physiol 143:81–91CrossRefGoogle Scholar
  16. Kemmerling S, Varju D (1981) Regulation of the body-substrate-distance in the stick insect: responses to sinusoidal stimulation. Biol Cybern 39:129–137CrossRefGoogle Scholar
  17. Kemmerling S, Varju D (1982) Regulation of the body-substrate-distance in the stick insect: step responses and modelling the control system. Biol Cybern 44:59–66CrossRefGoogle Scholar
  18. Kittman R (1991) Gain control in the femur-tibia feedback system of the stick insect. J Exp Biol, 157:503–522Google Scholar
  19. Schmitz J (1985) Control of the leg joints in the stick insects: differences in the reflex properties between the standing and the walking states. In: Gewecke M, Wendler G (eds) Insect locomotion. Parey, Berlin Hamburg 1985 pp 27–32Google Scholar
  20. Schmitz J (1986a) The depressor trochanteris motoneurones and their role in the coxo-trochanteral feedback loop in the stick insectCarausius morosus. Biol Cybern 55:25–34CrossRefGoogle Scholar
  21. Schmitz J (1986b) Properties of the feedback system controlling the coxa-trochanter joint in the stick insectCarausius morosus. Biol Cybern 55:35–42CrossRefGoogle Scholar
  22. Storrer J, Cruse H (1977) Systemanalytische Untersuchungen eines aufgeschnittenen Regelkreises am Bein der StabheuschreckeCarausius morosus. Kraftmessungen an den Antagonisten Flexor und Extensor Tibiae. Biol Cybern 25:131–142CrossRefGoogle Scholar
  23. Wendler G (1964) Laufen und Stehen der Stabheuschrecke: Sinnesborsten in den Beingelenken als Glieder von Regelkreisen. Z Vergl Physiol 48:198–250CrossRefGoogle Scholar
  24. Wendler G (1972) Körperhaltung bei der Stabheuschrecke: ihre Beziehung zur Schwereorientierung und Mechanismen ihrer Regelung. Verh Dtsch Zool Ges 65:214–219Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • H. Cruse
    • 1
  • K. Dautenhahn
    • 1
  • H. Schreiner
    • 2
  1. 1.Fakultät für BiologieUniversität BielefeldBielefeld 1Germany
  2. 2.Fachbereich BiologieUniversität KaiserslauternKaiserslauternGermany

Personalised recommendations