Annali di Matematica Pura ed Applicata

, Volume 96, Issue 1, pp 339–347 | Cite as

Asymptotic equivalence of Volterra equations

  • John A. Nohel


Volterra Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [1]
    R. K. MillerJ. A. NohelJ. S. W. Wong,Perturbationl of Volterra integral equations, J. Math. Anal. Applic.,25 (1969), pp. 676–691.CrossRefMathSciNetzbMATHGoogle Scholar
  2. [2]
    J. A. Nohel,Asymptotic relationships between systems of Volterra equations, Ann. di Mat. pura ed appl., (IV)90 (1971), pp. 139–166.MathSciNetGoogle Scholar
  3. [3]
    A. Strauss,On a perturbed Volterra integral equation, J. Math. Anal. Applic.,30 (1970), pp. 564–575.CrossRefzbMATHMathSciNetGoogle Scholar
  4. [4]
    S. I. GrossmanR. K. Miller,Perturbation theory for Volterra integrodifferential equations, J. Diff. Eq.,8 (1970), pp. 457–474.CrossRefMathSciNetzbMATHGoogle Scholar
  5. [5]
    J. A. Nohel,Perturbational of Volterra equations and admissibility, Japan-U.S. Seminar on Ordinary Differential and Functional Equations, Lecture Notes in Mathematics no. 243, Springer-Verlag, Berlin-Heidelberg-New York (1971), pp. 40–53.Google Scholar
  6. [6]
    S. I. Grossman — R. K. Miller,Nonlinear Volterra integrodifferential equations with L 1 kernels (to appear).Google Scholar
  7. [7]
    J. A. Nohel,Some problems in nonlinear Volterra integral equations, Bull. Amer. Math. Soc.,68 (1962), pp. 323–329.zbMATHMathSciNetCrossRefGoogle Scholar
  8. [8]
    R. K. Miller,Nonlinear Volterra Integral Equations, W. A. Benjamin, Menlo Park, California, 1971.zbMATHGoogle Scholar

Copyright information

© Nicola Zanichelli Editore 1973

Authors and Affiliations

  • John A. Nohel
    • 1
  1. 1.MadisonU.S.A.

Personalised recommendations