Advertisement

Annali di Matematica Pura ed Applicata

, Volume 96, Issue 1, pp 1–19 | Cite as

Application du degré topologique à l'estimation du nombre des solutions périodiques d'équations différentielles. I. Solutions périodiques quelconques

  • J. Mawhin
  • C. Muñoz
Article

Résumé

On complète un théorème d'existence de solutions périodiques pour des équations différentielles dû à l'un des auteurs par des renseignements concernant le nombre et la stabilité asymptotique locale des solutions périodiques.

Bibliographie

  1. [1]
    F. Browder,On continuity of fixed points under deformations of continuous mappings, Summa Brasil. Math.,4 (1960), pp. 183–191.zbMATHMathSciNetGoogle Scholar
  2. [2]
    L. Cesari,Asymptotic Behavior and Stability Problems in Ordinary Differential Equations, 2nd Ed., Springer-Verlag, Berlin, 1963.zbMATHGoogle Scholar
  3. [3]
    L. Cesari,Functional analysis and periodic solutions of nonlinear differential equations, Contr. Diff. Equ.,1 (1963), pp. 149–187.zbMATHMathSciNetGoogle Scholar
  4. [4]
    J. Cronin,The number of periodic solutions of nonautonomous systems, Duke Math. J.,27 (1960), pp. 183–194.CrossRefzbMATHMathSciNetGoogle Scholar
  5. [5]
    J. Cronin,Fixed points and topological degree in nonlinear analysis, Am. Math. Soc., Providence, R.I., 1964.zbMATHGoogle Scholar
  6. [6]
    J. K. Hale,Oscillations in Nonlinear Systems, McGraw-Hill, New York, 1963.zbMATHGoogle Scholar
  7. [7]
    Ph. Hartman,Ordinary Differential Equations, Wiley, New York, 1964.zbMATHGoogle Scholar
  8. [8]
    M. Jean,Equations différentielles non linéaires: différentiabilité des solutions par rapport aux conditions initiales et problème de la stabilité, Int. J. Non-linear Mech.,2 (1967), pp. 303–329.CrossRefzbMATHMathSciNetGoogle Scholar
  9. [9]
    Yu. S. Kolesov,Study of stability of solutions of second-order parabolic equations in the critical case, Math. USSR Izv.,3 (1969), pp. 1277–1291.CrossRefzbMATHGoogle Scholar
  10. [10]
    Yu. S. Kolesov,Periodic solutions of quasilinear parabolic second-order equations, Trudy Moskov. Mat. Obs.,21 (1969), pp. 131–152.MathSciNetGoogle Scholar
  11. [11]
    Yu. S.Kolesov,On a new method of proving the existence of a stable periodic solution, Proc. Fifth. Int. Confer. Nonlin. Oscill., tome 1; Izd. Ak. Nauk. SSR, Kiev, 1970, pp. 299–303.Google Scholar
  12. [12]
    A. M. Krasnodemskii,The global behavior of solutions of high-order differential equations, Ukr. Math. Zh.,15 (1965), pp. 205–213). (Engl. tr. Am. Math. Soc. Transl., (2),54 (1966) pp. 17–28).CrossRefGoogle Scholar
  13. [13]
    M. A. Krasnosel'skii,The theory of periodic solutions of non-autonomous differential equations, Russ. Math. Surveys,21 (1966), pp. 53–74.CrossRefzbMATHMathSciNetGoogle Scholar
  14. [14]
    M. A. Krasnosel'skii,The operator of translation along the trajectories of differential equations, Am. Math. Soc., Providence, R.I., 1968.Google Scholar
  15. [15]
    N. Levinson,Transformation theory of nonlinear differential equations of the second order, Ann. of Math. (2),45 (1944), pp. 723–737;49 (1948), p. 738.CrossRefzbMATHMathSciNetGoogle Scholar
  16. [16]
    J. L. Massera,The number of subharmonic solutions of nonlinear differential equations of the second order, Ann. of Math. (2),50 (1949), pp. 118–126.CrossRefzbMATHMathSciNetGoogle Scholar
  17. [17]
    J. L. Massera,The existence of periodic solutions of systems of differential equations, Duke Math. J.,17 (1950), pp. 457–475.CrossRefzbMATHMathSciNetGoogle Scholar
  18. [18]
    J. Mawhin,Degré topologique et solutions périodiques des systèmes différentiels non linéaires, Bull. Soc. R. Sci. Liège,38 (1969), pp. 308–398.zbMATHMathSciNetGoogle Scholar
  19. [19]
    J. Mawhin,Equations intégrales et solutions périodiques des systèmes différentiels non linéaires, Bull. Ac. R. Belgique, Cl. Sci., (5),55 (1969), pp. 934–947.zbMATHMathSciNetGoogle Scholar
  20. [20]
    J. Mawhin,Equations fonctionnelles et solutions périodiques, Equa.-Diff. 70, C.N.R.S., Marseille, 1970.Google Scholar
  21. [21]
    J. Mawhin,Existence of periodic solutions for higher-order differential systems that are not of class D, J. Diff. Equ.,8 (1970), pp. 523–530.CrossRefzbMATHMathSciNetGoogle Scholar
  22. [22]
    J. Mawhin,An extension of a theorem of A. C. Lazer on forced nonlinear oscillations, J. Math. Anal. Appl., à paraître.Google Scholar
  23. [23]
    J. Mawhin,Periodic solutions of nonlinear functional differential equations, J. Diff. Equ.,10 (1971), pp. 240–261.CrossRefzbMATHMathSciNetGoogle Scholar
  24. [24]
    J. Mawhin,Equations non linéaires dans les espaces de Banach, Rapp. Sém. Math. Appl. et Méc., Un. de Louvain, no. 39, août 1971.Google Scholar
  25. [25]
    H. Poincaré,Les méthodes nouvelles de la mécanique céleste, Paris, 1892–1899.Google Scholar
  26. [26]
    R. Reissig -G. Sansone -R. Conti,Qualitative Theorie nichtlinearer Differentialgleichungen, Cremonese, Roma, 1963.Google Scholar
  27. [27]
    R. Reissig -G. Sansone -R. Conti,Nichtlineare Differentialgleichungen höherer Ordnung, Cremonese, Roma, 1969.zbMATHGoogle Scholar
  28. [28]
    M. Roseau,Solutions périodiques ou presque périodiques des systèmes différentiels de la mécanique non linéaires, C.I.S.M., Courses and Lectures no. 44, Udine, 1970.Google Scholar
  29. [29]
    W. Rudin,Principles of Mathematical Analysis, 2nd Ed., McGraw-Hill, New York, 1964.zbMATHGoogle Scholar
  30. [30]
    J. T. Schwartz,Nonlinear Functional Analysis, New York University, 1964.Google Scholar
  31. [31]
    L. Schwartz,Analyse. Topologie générale et analyse fonctionnelle, Hermann, Paris, 1970.Google Scholar

Copyright information

© Nicola Zanichelli Editore 1973

Authors and Affiliations

  • J. Mawhin
    • 1
  • C. Muñoz
    • 2
  1. 1.Travail réalisé en partie pendant que le premier auteur était attaché à l'Institut d'Astrophysique de l'Université de LiègeBelgique
  2. 2.MexiqueMexico

Personalised recommendations