Advertisement

Annali di Matematica Pura ed Applicata

, Volume 115, Issue 1, pp 341–348 | Cite as

Regularity of weak solutions of one-dimensional two-phase Stefan problems

  • Antonio Fasano
  • Mario Primicerio
  • Shoshana Kamin
Article

Keywords

Weak Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Sunto

Si considera il problema di Stefan unidimensionale a due fasi e si dimostra l'esistenza di soluzioni classiche sotto ipotesi minimali sui dati (continuità a tratti e limitatezza). Nelle stesse ipotesi si dimostra che tali soluzioni dipendono in modo continuo dai dati, conseguendo un risultato che è più generale anche di quello noto per le soluzioni deboli.

References

  1. [1]
    J. R. Cannon - D. B. Henry - D. B. Kotlow,Classical solutions of the one-dimensional two-phase Stefan problem, to appear on Ann. Mat. Pura Appl.Google Scholar
  2. [2]
    J. R. Cannon -C. D. Hill -M. Primicerio,The one-phase Stefan problem for the heat equation with boundary temperature specification, Arch. Rat. Mech. Anal.,39 (1970), pp. 270–274.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    J. R. Cannon -M. Primicerio,A two-phase Stefan problem with temperature boundary conditions, Ann. Mat. Pura Appl., (IV)88 (1971), pp. 177–192.MathSciNetzbMATHGoogle Scholar
  4. [4]
    A. Fasano -M. Primicerio,General free-boundary problems for the heat equation, part III, J. Math. Anal. Appl.,59 (1977), pp. 1–14.CrossRefMathSciNetzbMATHGoogle Scholar
  5. [5]
    A. Fasano -M. Primicerio,Viscoplastic impact of a rod on a wall, Boll. U.M.I., (4)II, Suppl. no. 3 (1975), pp. 531–533.MathSciNetGoogle Scholar
  6. [6]
    A. Friedman,The Stefan problem in several space variables, Trans. A.M.S.,133 (1968), pp. 51–87.CrossRefzbMATHGoogle Scholar
  7. [7]
    A. Friedman,One dimensional Stefan problems with non-monotone free boundary, Ibid., pp. 89–114.CrossRefzbMATHGoogle Scholar
  8. [8]
    A. Friedman,Analiticity of the free boundary for the Stefan problem, to appear.Google Scholar
  9. [9]
    Jang Li-Shang,The two-phase Stefan problem, Chinese Mat. Acta,5 (1964), pp. 35–53.Google Scholar
  10. [10]
    S. L. Kamenomostkaja,On Stefan's problem, Mat. Sb.,53 (1961), pp. 489–514.MathSciNetGoogle Scholar
  11. [11]
    O. A. Ladyzhenskaja - V. A. Solonnikov - N. N. Ural′ceva,Linear and quasilinear equations of parabolic type, Transl. of Math. Monographs, vol. 23, Amer. Mat. Soc. Providence, R. I. (1968).Google Scholar
  12. [12]
    O. A. Oleinik,A method of solution of the general Stefan problem, Dokl. Akad. Nauk SSSR,135 (1960), pp. 67–70.Google Scholar
  13. [13]
    D. G. Schaeffer,A new proof of the infinite differentiability of the free boundary in the Stefan problem, J. Diff. Eq.,20 (1976), pp. 266–269.CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata 1977

Authors and Affiliations

  • Antonio Fasano
    • 1
  • Mario Primicerio
    • 2
  • Shoshana Kamin
    • 3
  1. 1.Bari
  2. 2.Firenze
  3. 3.Tel-AvivIsrael

Personalised recommendations