Advertisement

Annali di Matematica Pura ed Applicata

, Volume 115, Issue 1, pp 319–328 | Cite as

Spaces of operator-valued measures on topological spaces

  • A. K. Katsaras
Article

Summary

Let X be a completely regular space and E a locally convex space. We study a space M(B, E′) of E′-valued measures defined on the algebra generated by the zero subsets of X. We also study certain subspaces of M(B, E′).

Keywords

Topological Space Convex Space Regular Space Zero Subset 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [1]
    R. C. Buck,Bounded continuous functions on a locally compact space, Michigan Math. J.,5 (1958), pp. 95–104.CrossRefzbMATHMathSciNetGoogle Scholar
  2. [2]
    N. Dinculeanu,Vector measures (Pergamon Press, 1967).Google Scholar
  3. [3]
    D. Fremlin -D. Garling -R. Haydon,Bounded measures on topological spaces, Proc. London Math. Soc., (3)25 (1972), pp. 115–136.MathSciNetGoogle Scholar
  4. [4]
    A. K. Katsaras,Some locally convex spaces of continuous vector valued functions over a completely regular space and their duals, Trans. Amer. Math. Soc.,216 (1976), pp. 367–387.CrossRefzbMATHMathSciNetGoogle Scholar
  5. [5]
    A. K. Katsaras,Spaces of vector measures, Trans. Amer. Soc.,206 (1975), pp. 313–328.CrossRefzbMATHMathSciNetGoogle Scholar
  6. [6]
    A. K. Katsaras,Locally convex topologies on spaces of continuous vector functions, Math. Noch.,17 (1976), pp. 211–226.Google Scholar
  7. [7]
    A. K. Katsaras,Vector-valued measures and strict topologies, Annali di Mat. IV, Vol. CVI (1975), pp. 261–272.Google Scholar
  8. [8]
    A. K. Katsaras,On a space of operator-valued measures, Rendiconti di Matematica (1) Vol. 9, VI (1976), pp. 151–176.zbMATHMathSciNetGoogle Scholar
  9. [9]
    A. K. Katsaras,Continuous linear functionals on spaces of vector valued junctions, Bull. Soc. Math. Grèce,15 (1974), pp. 13–19.zbMATHMathSciNetGoogle Scholar
  10. [10]
    A. K. Katsaras -D. B. Liu,Integral representations of weakly compact operators, Pacific J. Math.,56 (1975), pp. 547–556.MathSciNetGoogle Scholar
  11. [11]
    A. K. Katsaras,On the strict topology in the locally convex setting, Math. Ann.,216 (1975), pp. 105–111.CrossRefMathSciNetGoogle Scholar
  12. [12]
    P. Lewis,Vector measures and topology, Rev. Roum. Math. Pures et appl.,16 (1971), pp. 1201–1209.zbMATHGoogle Scholar
  13. [13]
    S. Mossiman,The strict topology and the ordered vector space C(X) (preprint).Google Scholar
  14. [14]
    A. Peressini,Ordered topological vector spaces, Harper and Ro, New York (1967).Google Scholar
  15. [15]
    H. Schaefer,Topological vector spaces, Springer-Verlag, Berlin (1971).Google Scholar
  16. [16]
    F. Sentilles,Bounded continuous functions on a completely regular space, Trans. Amer. Math. Soc.,168 (1972), pp. 311–336.CrossRefzbMATHMathSciNetGoogle Scholar
  17. [17]
    F. Sentilles -R. Wheeler,Linear functionals and partitions of unity in C b (X), Duke Math. J.,41, 3 (1974), pp. 483–496.CrossRefMathSciNetGoogle Scholar
  18. [18]
    V. Varadarajan,Measures on topological spaces, Amer. Math. Soc. Transl., (2)48 (1965), pp. 161–228.Google Scholar
  19. [19]
    J. Wells,Bounded continuous vector-valued functions on a locally compact space, Michigan Math. J.,12 (1965), pp. 119–126.CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata 1977

Authors and Affiliations

  • A. K. Katsaras
    • 1
  1. 1.JoanninaGreece

Personalised recommendations