Advertisement

Annali di Matematica Pura ed Applicata

, Volume 115, Issue 1, pp 17–39 | Cite as

Formal structure and classification of theories of oriented materials

  • G. Capriz
  • P. Podio Guidugli
Article

Summary

In the first part of the paper we discuss an equation of balance of generalized moment of momentum proposed earlier; we show that internal forces necessarily play a rôle in it; we put in evidence the formal structure of some theories of polar continua. In the second part we show that most cases of oriented materials studied so far can be interpreted as subcases of a general type, when appropriate kinematical constraints are introduced; this unifying point of view allows a clear classification of subcases. It becomes also possible to obtain, in a standard way, balance equations which are pure, in the sense that they do not involve internal reactions.

Keywords

Balance Equation Formal Structure General Type Internal Force Unify Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [1]
    R. D. Mindlin,Micro-structure in linear elasticity, Arch. Rational Mech. Anal.,16 (1964), pp. 51–78.CrossRefzbMATHMathSciNetGoogle Scholar
  2. [2]
    J. L. Ericksen,Conservation laws for liquid crystals, Trans. Soc. Rheol.,5 (1961), pp. 23–34.CrossRefMathSciNetGoogle Scholar
  3. [3]
    A. C. Eringen,Mechanics of micromorphic continua, in Proc. IUTAM Symp., Freudenstadt and Stuttgart, 1967, pp. 18–35, E. Kröner Ed., Springer (1968).Google Scholar
  4. [4]
    R. S. Rivlin,Generalized mechanics of continuous media, in Proc. IUTAM Symp., Freudenstadt and Stuttgart, 1967, pp. 1–17, E. Kröner Ed., Springer (1968).Google Scholar
  5. [5]
    G. Capriz -P. Podio Guidugli,Discrete and continuous bodies with affine structure. Ann. Mat. Pura Appl., (4)111 (1976), pp. 195–217.MathSciNetGoogle Scholar
  6. [6]
    R. A. Toupin,Theories of elasticity with couple-stress, Arch. Rational Mech. Anal.,17 (1964), pp. 85–112.CrossRefzbMATHMathSciNetGoogle Scholar
  7. [7]
    M. E. Gurtin -P. Podio Guidugli,The thermodynamics of constrained materials, Arch. Rational Mech. Anal.,51 (1973), pp. 192–208.CrossRefMathSciNetGoogle Scholar
  8. [8]
    G. Grioli, Elasticità asimmetrica, Ann. Matem. Pura Appl., (4),50 (1960), pp. 387–417.MathSciNetGoogle Scholar
  9. [9]
    R. A. Toupin,Elastic materials with couple-stresses, Arch. Rational Mech. Anal.,11 (1962), pp. 385–414.CrossRefzbMATHMathSciNetGoogle Scholar
  10. [10]
    C. Truesdell - W. Noll,The non-linear field theories of mechanics, Handbuch der Physik, III/3, S. Flügge Ed., Springer (1965).Google Scholar
  11. [11]
    C. Truesdell - R. A. Toupin,The classical field theories, Handbuch der Physik, III/1, S. Flügge Ed., Springer (1960).Google Scholar
  12. [12]
    R. Stojanovitch - S. Djuritch,On the measures of strain in the theory of the elastic generalized Cosserat continuum, in Symp. Math. I, INAM, Roma, 1968, pp. 211–228, Oderisi and Academic Press (1969).Google Scholar
  13. [13]
    M. E. Gurtin - P. Podio Guidugli,The linear theory of constrained elastic materials, (unpublished).Google Scholar
  14. [14]
    R. D. Mindlin -H. F. Tiersten,Effects of couple-stresses in linear elasticity, Arch. Rational Mech. Anal.,11 (1962), pp. 415–448.CrossRefMathSciNetGoogle Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata 1977

Authors and Affiliations

  • G. Capriz
    • 1
  • P. Podio Guidugli
    • 2
  1. 1.Pisa
  2. 2.Ancona

Personalised recommendations