Advertisement

Annali di Matematica Pura ed Applicata (1923 -)

, Volume 72, Issue 1, pp 295–304 | Cite as

On convolution operators leavingL p,λ spaces invariant

  • Jaak Peetre
Article

Summary

It is shown that certain convolution operators, including the Hilbert transform in the one dimensional case, leave invariant the Lp,λ spaces studied by Campanato, Stampacchia and others.

Keywords

Dimensional Case Convolution Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [1]
    S. Campanato, Proprietà di hölderianità di alcune classi di funzioni, Ann. Scuola Norm. Sup. Pisa 17 (1963), 175–188.MathSciNetzbMATHGoogle Scholar
  2. [2]
    —— ——, Proprietà di una famiglia di spazi funzionali, Ann. Scuola Norm. Sup. Pisa 18 (1964), 137–160.MathSciNetzbMATHGoogle Scholar
  3. [3]
    —— ——, Teoremi di interpolazione per transformazioni che applicano Lp in Ch,α, Ann. Scuola Norm. Sup. Pisa 18 (1964), 345–360.MathSciNetzbMATHGoogle Scholar
  4. [4]
    —— ——,Equazioni ellittiche del IIo ordine e spazi L(2,λ), Ann. Mat. Pura Appl. 69 (1965), 321–382.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    S. Campanato andM.K.V. Murthy, Una generalizzazione del teorema di Riesz-Thorin, Ann. Scuola Norm. Sup. Pisa 19 (1965), 87–100.MathSciNetzbMATHGoogle Scholar
  6. [6]
    M. Cotlar,A combinatorial inequality and its application to L 2 spaces, Revista Mat. Cuyana 1 (1955), 41–55.MathSciNetGoogle Scholar
  7. [7]
    -- --,Condìciones des continuidad de operadores potentiales y de Hilbert, Cursos y seminarios de matematica, Fascículo 2, Universidade de Buenos Aires, 1959.Google Scholar
  8. [8]
    L. Hörmander,Estimates for translation invariant operators in Lp spaces. Acta Math. 104 (1960), 93–140.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    F. John andL. Nirenberg,On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415–426.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    G. Meyers,Mean oscillation over cubes and Hölder continuity, Proc. Am. Math. Soc. 15 (1964), 717–721.zbMATHGoogle Scholar
  11. [11]
    C. Miranda,Equazioni alle derivate parziali di tipo ellittico, Ergebnisse der Mathematik und ihrer Grenzgebiete, Neue Folge, Heft 2, Springer-Verlag, Berlin, Göttingen, Heidelberg, 1955.zbMATHGoogle Scholar
  12. [12]
    J. Peetre,Espaces d'interpolation et théorème de Soboleff, to appear in Ann. Inst. Fourier 16 (1966).Google Scholar
  13. [13]
    -- --,Applications de la théorie des espaces d'interpolation à l'analyse harmonique, to appear in Ricerche Mat.Google Scholar
  14. [14]
    —— ——,Pointwise convergence of singular convolution integrals, in Ann. Scuola Norm. Sup. Pisa 20 (1966), 45–61.MathSciNetzbMATHGoogle Scholar
  15. [15]
    S. Spanne,Some function spaces defined using mean oscillation over cubes, Ann Scuola Norm Sup. Pisa 19 (1965), 593–608.MathSciNetzbMATHGoogle Scholar
  16. [15b]
    -- --,Sur l'interpolation entre les espaces L k, to appear in Ann Scuola Norm. Sup. Pisa.Google Scholar
  17. [16]
    G. Stampacchia,L(p,λ) spaces and interpolation, Comm. Pure Appl. Math. 17 (1964), 293–306.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Nicola Zanichelli Editore 1966

Authors and Affiliations

  • Jaak Peetre
    • 1
  1. 1.LundSweden

Personalised recommendations