Advertisement

Su alcune proprietà di geometria euclidea ed hermitiana in uno spazio vettoriale quaternionale

  • 27 Accesses

  • 4 Citations

Riassunto

Identificati, in modo opportuno, gli spazi vettoriali Qn ed R4n, si esaminano varie proprietà che intercorrono tra la metrica hermitiana di Qn e la metrica euclidea di R4n. Si definisce poi, per ogni sottospazio Et di E 4n (t =1, 2, 3, 4) una nozione di deviazione caratteristica assoluta che estende l'analoga nozione nota nel caso di cn. Si riescono così a caratterizzare i sottospazi Et pseudocaratteristici (cioè contenuti in un E4 che si identifica ad una retta di Qn), ed i sottospazi Et a prodotto hermitiano reale.

Bibliografia

  1. [1]

    A. Albert,Structure of algebras, « Ann. Math Society », N. York, 1939.

  2. [2]

    M. Bruni,Su alcuni sistemi di sottospazi di uno spazio hermitiano, « Rend. di Mat. e app. » 20, (1961).

  3. [3]

    —— ——, Relazioni tra metriche euclidee ed hermitiane in uno spazio vettoriale quaternionale, Rend. Lincei, 8, 38, (1965).

  4. [4]

    E. Cartan,Léçons sur la Géométrie des espaces de Riemann, 2 ed, Gauthier-Villars, Paris, 1951.

  5. [5]

    P. Du Val,Homographies, Quaternions and Rotations, Clarendon Press, Oxford, 1964.

  6. [6]

    B. Eckmann, Cours sur les variétés complexes, « Centro Internazionale Matematico Estivo » C. I. M E., Cremonese, Roma, 1956.

  7. [7]

    E. Martinelli,Sulle varietà a struttura complessa, « Ann. di Mat » 43, (1957).

  8. [8]

    -- --,Generalizzazione dei teoremi di minimo volume di Wirtinger a tutte le varietà kähleriane o quasi-kähleriane, « Ann. di Mat. » 50 (1960).

  9. [9]

    —— ——, Varietà a struttura quaternionale generalizzata, « Rend. Lincei, 8, 26, (1959).

  10. [10]

    -- --,Modello metrico reale dello spazio proiettivo quaternionale, « Ann. di Mat. » 49, (1960).

  11. [11]

    G. B. Rizza, Deviazione caratteristica delle faccette piane di una varietà a struttura complessa, « Rend. Lincei », 8, 24, (1958).

  12. [12]

    -- --,Deviazione caratteristica e proprietà locali delle 2q-faccette di una V 2n a struttura complessa, « Rend. Acc. Naz. XL », (1959).

  13. [13]

    -- --.Teoremi di curvatura in una V 2n quasi-hermitiana, « Riv. Mat. Univ. Parma » 2, (1961).

  14. [14]

    F. Severi,La geometria delle funzioni analitiche di più variabili ed i teoremi di esistenza e di unicità ad esse relativi, « Ann. di Mat. », 16, (1937).

Download references

Author information

Additional information

Lavoro eseguito nell'ambito dell'attività dei Gruppi di Ricerca del Comitato per la Matematica del C. N. R. per l'anno accademico 1964–65.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bruni, M. Su alcune proprietà di geometria euclidea ed hermitiana in uno spazio vettoriale quaternionale. Annali di Matematica 72, 59–77 (1966) doi:10.1007/BF02414327

Download citation