Advertisement

Annali di Matematica Pura ed Applicata

, Volume 56, Issue 1, pp 281–300 | Cite as

Equazioni differenziali in uno spazio di Banach. Teorema di esistenza e struttura del pennello delle soluzioni in ipotesi di Carathéodory

  • Giuseppe Pulvirenti
Article

Sunto

Si stabilisce un teorema di esistenza per equazioni differenziali in uno spazio diBanach sotto ipotesi diCarathéodory. Viene studiata la struttura del pennello delle soluzioni pervenendo a teoremi che estendono quelli, noti nel caso degli spazi euclidei, diH. Kneser eM. Hukuhara.

Summary

An existence theorem for differential equations in aBanach space is proved under hypothesis ofCarathéodory type. The set of solutions issued from a given point is studied and results analogous to those valid in case of a euclidean space, byH. Kneser andM. Hukuhara, are obtained.

Bibliografia

  1. [1]
    N. Aronszajn,Le correspondant topologique de l'unicité dans la théorie des équations différentielles, « Ann. of Math. », 43 (1942), 730–738.CrossRefzbMATHMathSciNetGoogle Scholar
  2. [2]
    C. Corduneanu,Equazioni differenziali negli spazi di Banach, teoremi di esistenza e di prolungabilità, « Rend. Accad. Naz. Lincei », (8) 23 (1957), 226–230.MathSciNetGoogle Scholar
  3. [3]
    C. Corduneanu,Ecuatii diferentiale in spatii Banach. Aplicabilitatea principiului topologic al lui Wazervski, « Acad. R. P. Romine, Fil. Lasi, Stud. Cerc. Sti. Mat. », 9 (1958), 101–111.MathSciNetGoogle Scholar
  4. [4]
    K. Hayashi,On the solutions of the system of ordinary differential equations, « Mem. Coll. Sci. Univ. Kyoto », Ser. A 28 (1953), 19–25.zbMATHGoogle Scholar
  5. [5]
    E. Hille-R. S. Phillips,Functional analysis and semi-groups, revised ed, « Amer. Math. Soc. Colloquium Publ. », 31 (1957).Google Scholar
  6. [6]
    M. Hukuhara (M. Fukuhara),Sur les systèmes des équations différentielles ordinaires, « Jap. Jour. Math. » 5, (1928), 345–350.Google Scholar
  7. [7]
    H. Kneser,Über die Lösungen eines Systems gervöhnlicher Differentialgleichungen das der Lipschitzschen Bedingung nicht genügt, « Stzb. Preuss. Ak. Wiss., Ph. - Math. Rl. », 1923, 171–174.Google Scholar
  8. [8]a)
    J. L. Massera-J. J. Schäffer Linear differential equations and functional analysis, I, « Ann. of Math. », 67 (1958), 517–573;CrossRefMathSciNetGoogle Scholar
  9. [8]b)
    Linear differential equations and functional analysis, II. Equations with periodic coefficients, « Ann. of Math. », 69 (1959), 88–104;CrossRefMathSciNetGoogle Scholar
  10. [8]c)
    Linear differential equations and functional analysis, III. Lyapunov's second method in the case of conditional stability, « Ann. of Math. », 69 (1959), 535–574;CrossRefMathSciNetGoogle Scholar
  11. [8]d)
    Linear differential equations and functional analysis, IV., « Math. Annalen », 139 (1960), 287–342.CrossRefGoogle Scholar
  12. [9]
    G. Pulvirenti,Il fenomeno di Peano nel problema di Darboux per l'equazione s = f(x, y, z) in ipotesi di Carathéodory, « Le matematiche », 15 (1960), 15–28.zbMATHMathSciNetGoogle Scholar
  13. [10]
    J. Schauder,Der Fixpunktsatz in Funktionalräumen, « Studia Math. », 2 (1930), 171–180.zbMATHGoogle Scholar
  14. [11]
    G. Stampacchia,Le trasformazioni funzionali che presentano il fenomeno di Peano, « Rend. Accad. Naz. Lincei », (8) 7 (1949) 80–84.zbMATHMathSciNetGoogle Scholar

Copyright information

© Nicola Zanichelli Editore 1961

Authors and Affiliations

  • Giuseppe Pulvirenti
    • 1
  1. 1.Catania

Personalised recommendations