Annali di Matematica Pura ed Applicata

, Volume 56, Issue 1, pp 1–31 | Cite as

Some singular cauchy problems

  • Robert W. Carroll


Existence and uniqueness theorems for some generalizedEuler-Poisson-Darboux equations are proved and growth and convexity properties of the solutions are studied for multiply subharmonic initial values.


Cauchy Problem Uniqueness Theorem Convexity Property Singular Cauchy Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [1]
    N. Bourbaki.Intégration, Chap. 1–4, Paris, 1952.Google Scholar
  2. [2]
    -- --,Espaces vectòriels topologiques, Chap. 3–5. Paris, 1955.Google Scholar
  3. [3]
    R. Carroll,L'équation d'Euler-Poisson-Darboux et les distributions sousharmoniques, «C. R. Acad. Sci. Paris», vol. 246 (1958), pp. 2560–2562.zbMATHMathSciNetGoogle Scholar
  4. [4]
    -- --,On some generalized Cauchy problems and the convexity of their solutions, AFOSR-TN-59-649, University of Maryland, 1959.Google Scholar
  5. [5]
    L. Ehrenpreis.Analytic functions and the Fourier transform of distributions I, «Annals of Mathematics», vol. 63 (1956), pp. 129–159.CrossRefMathSciNetGoogle Scholar
  6. [6]
    —— ——,Solutions of some problems of division, «American Journ. of Math.», vol. 78 (1956), pp. 685–715.zbMATHMathSciNetGoogle Scholar
  7. [7]
    B. Friedman,An abstract formulation of the method of separation of variables, Proc. Conf. on Diff. Eqs., University of Maryland, 1955.Google Scholar
  8. [8]
    A. Grothendieck,Produits tensoriels topologiques et espaces nucléaires, Memoir 16 Amer. Math. Soc., 1955.Google Scholar
  9. [9]
    L. Hörmander,On the theory of general partial differential operators, «Acta Math.», vol. 94 (1955), pp. 161–248.CrossRefzbMATHMathSciNetGoogle Scholar
  10. [10]
    —— ——,On interior regularity of the solutions of partial differential equations, «Comm. on Pure and Applied Math.», vol. 11 (1958), pp. 197–218.zbMATHGoogle Scholar
  11. [11]
    D. Krahn,On the iterated wave equation, «Proc. Kon. Nederlandse Akad. Wetenscappen», vol. 60 (1957), pp. 492–505.zbMATHMathSciNetGoogle Scholar
  12. [12]
    J. L. Lions,Problèmes aux limites en théorie des distributions, «Acta Math.», vol. 94 (1955), pp. 13–153.CrossRefzbMATHMathSciNetGoogle Scholar
  13. [13]
    —— ——,Opérators de Delsarte et problèmes mixtes, «Bull. Soc. Math. de France», vol. 84 (1956), pp. 9–95.zbMATHGoogle Scholar
  14. [14]
    —— ——,Lectures on elliptic partial differential equations, Tata Institute, Bombay, 1957.Google Scholar
  15. [15]
    S. Lojasiewicz,Sur la fixation des variables dans une distribution, «Studia Math.», vol. 17 (1958), pp. 1–64.zbMATHMathSciNetGoogle Scholar
  16. [16]
    B. Malgrange,Existence et approximation des solutions des équations aux derivées partielles et des équations de convolution, «Annales de l'Inst. Fouries», vol. 7 (1955–56), pp. 271–355.MathSciNetGoogle Scholar
  17. [17]
    —— ——,Sur nne classe d'opérateurs différentiels hypoelliptiques, «Bull. Soc. Math. de France», vol. 85 (1957), pp. 283–306.zbMATHMathSciNetGoogle Scholar
  18. [18]
    L. Payne,Representation formulas for solutions of a class of partial differential equations, AFOSR-TN-58-197, University of Maryland, 1958.Google Scholar
  19. [18bis]
    C. Pucci andA. Weinstein,Sull'equazione del calore con dati subarmonici e sue generalizzazioni, «Accad. Nazionale dei Lincei», Vol. 24 (1958), pp. 493–496.MathSciNetzbMATHGoogle Scholar
  20. [19]
    F. Riesz,Sur les fonctions subharmoniques et leur rapport à la théorie du potential, «Acta Math.», vol. 48 (1926), and vol. 54 (1930).Google Scholar
  21. [20]
    P. Rosenbloom.An operational calculus (abstract), «Bull. Amer. Math. Soc.», vol. 61 (1955), p. 73.Google Scholar
  22. [21]
    P. Rosenbloom andE. Forsythe,Numerical analysis and partial differential equations, New York, 1958.Google Scholar
  23. [22]
    L. Schwartz,Théorie des distributions, vol. 1–2, Paris, 1950–51.Google Scholar
  24. [23]
    -- --,Les équations d'évolution liées au produit de composition, «Annales de l'Inst. Fourier», vol. 2 (1950).Google Scholar
  25. [24]
    —— ——,Espaces de fonctions différentiables à valeurs vectorielles, «Journal d'Analyse Math.», vol. 4 (1954–55), pp. 88–148.CrossRefGoogle Scholar
  26. [25]
    L. Schwartz,Un lemme sur la dérivation des fonctions vectorielles d'une variable réelle, «Annales de l'Inst. Fourier», vol. 2 (1950), pp. 17–18.zbMATHGoogle Scholar
  27. [26]
    —— ——,Théorie des distributions à valeurs vectorielles I, «Annales de l'Inst. Fourier», vol. 7 (1957), pp. 1–141.zbMATHGoogle Scholar
  28. [27]
    —— ——,Ecuaciones diferenciales parciales elipticas, Universidad Nacional de Colombia, Bogota, 1956.Google Scholar
  29. [28]
    S. Sobolev,Nekotorye primeneniya funktsional'nogo analiza v matematiceskoj fizike, Leningrad, 1950.Google Scholar
  30. [29]
    G. N. Watson,A treatise on theory of Bessel functions, Cambridge, 1944.Google Scholar
  31. [30]
    A. Weinstein,On the wavo equation and the equation of Euler-Poisson, Proc. Fifth Symposium of Applied Math., 1952.Google Scholar
  32. [31]
    —— ——,Generalized axially symmetric potential theory, «Bull. Amer. Math. Soc.», vol. 59 (1953), pp. 20–28.zbMATHMathSciNetCrossRefGoogle Scholar
  33. [32]
    —— ——,The singular solutions and the Cauchy problem for generalized Tricomi equations «Comm. Pure and Applied Math.», vol. 7 (1954), pp. 105–116.zbMATHMathSciNetGoogle Scholar
  34. [33]
    —— ——,The generalized radiation problem and the EPD equation, «Summa Brasiliensis Math.», vol. 3 (1955), pp. 125–147.zbMATHMathSciNetGoogle Scholar
  35. [34]
    —— ——,Sur un problème de Cauchy avec des données sousharmoniques, «C. R. Acad. Sci. Paris», vol. 243 (1956), p. 1193.MathSciNetGoogle Scholar
  36. [35]
    —— ——,On a Cauchy problem with subharmonic initial values, «Annali di Mat.», vol. 43 (1957), pp. 325–340.CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Nicola Zanichelli Editore 1961

Authors and Affiliations

  • Robert W. Carroll
    • 1
  1. 1.New BrunswickU.S.A.

Personalised recommendations