Acta Mathematica

, Volume 145, Issue 1, pp 121–154

Minimal triangulations on orientable surfaces

  • M. Jungerman
  • G. Ringel
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Gustin, W., Orientable embedding of Cayley graphs.Bull. Amer. Math. Soc., 69 (1963), 272–275.MATHMathSciNetCrossRefGoogle Scholar
  2. [2]
    Guy, R. K. &Ringel, G., Triangular embedding ofK n−K6 J. Combinatorial Theory, Ser. B, 21 (1976), 140–145.MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    Heawood, P. J., Map colour theorem.Quart. J. Math., 24 (1890), 332–338.Google Scholar
  4. [4]
    Heffter, L., Über das Problem der Nachbargebiete.Math. Ann., 38 (1891), 477–508.CrossRefMathSciNetGoogle Scholar
  5. [5]
    Huneke, J. P., A minimum-vertex triangulation. To appear.Google Scholar
  6. [6]
    Jungerman, M., Orientable triangular embeddings ofK 15K 3 andK 13K 3.J. Combinatorial Theory, Ser. B., 16 (1974), 293.MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    —, The genus ofK n-K2 J. Combinatorial Theory, Ser. B, 18 (1975), 53–58.MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    Jungerman, M. &Ringel, G., The genus of then-octahedron: Regular cases.J. Graph Theory, 2 (1978), 69–75.MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    Ringel, G., Wie man die geschlossenen nichtorientierbaren Flächen in möglichst wenig Dreiecke zerlegen kann.Math. Ann., 130 (1955), 317–326.MATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    —, Über das Problem der Nachbargebiete auf orientierbaren Flächen.Abh. Math. Sem. Univ. Hamburg, 25 (1961), 105–127.MATHMathSciNetCrossRefGoogle Scholar
  11. [11]
    Ringel, G. Map Color Theorem Springer-Verlag, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Band 209, 1974.Google Scholar
  12. [12]
    Ringel, G. &Youngs, J. W. T., Solution of the Heawood map-coloring problem Case 11.J. Combinatorial Theory, 7 (1969), 71–93.MathSciNetGoogle Scholar
  13. [13]
    —, Lösung des Problems der Nachbargebiete auf orientierbaren Flächen.Arch. Math. (Basel), 20 (1969), 190–201.MATHMathSciNetGoogle Scholar
  14. [14]
    Terry, C. M., Welch, L. R. &Youngs, J. W. T., The genus ofK 128.J. Combinatorial Theory, 2 (1967), 43–60.MATHMathSciNetGoogle Scholar
  15. [15]
    Youngs, J. W. T., Solution of the Heawood map-coloring problem-Cases 3, 5, 6 and 9.J. Combinatorial Theory, 8 (1970), 175–219.MATHMathSciNetGoogle Scholar
  16. [16]
    —, The Heawood map-coloring problem-Cases 1, 7, and 10.J. Combinatorial Theory, 8 (1970), 220–231.MATHMathSciNetGoogle Scholar

Copyright information

© Almqvist & Wiksell 1980

Authors and Affiliations

  • M. Jungerman
    • 1
  • G. Ringel
    • 1
  1. 1.University of CaliforniaSanta CrusU.S.A.

Personalised recommendations