The kinematic formula in integral geometry for cylinders

  • 34 Accesses

  • 3 Citations


We generalize the kinematic formula of Chern-Federer (1.2) to the case in which the moving manifold Ma is a cylinder in En. These cylinders and the corresponding kinematic density are suitable defined and some particular cases are considered in detail.


  1. [1]

    S. S. Chern,On the kinematic formula in Integral Geometry, J. Math. and Mech.,16 (1966), pp. 101–118.

  2. [2]

    H. Federer,Curvature Measures, Trans. Amer. Math. Soc.,93 (1959), pp. 418–491.

  3. [3]

    H. Hadwiger,Vorlesungen über Inhalt, Oberfläche und Isoperimetrie, Springer, Berlin, 1957.

  4. [4]

    L. A. Santaló,Geometria Integral en espacios de curvatura constante, Publ. Com. Nac. Energia Atòmica, Serie Mat., vol. 1, No. 1, Buenos Aires, 1952.

  5. [5]

    L. A. Santaló,Sur la mesure des éspaces linéaires qui coupent un corps convexe et problemes qui s'y rattachent, Colloque sur les questions de réalité en Géometrie, Liege, 1955, pp. 177–190.

  6. [6]

    H. Weyl,On the volume of tubes, Amer. J. Math.,61 (1939), pp. 461–472.

Download references

Author information

Additional information

Dedicated to ProfessorBeniamino Segre on the occasion of his 70-th birthday

Entrata in Redazione il 22 maggio 1973.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Santaló, L.A. The kinematic formula in integral geometry for cylinders. Annali di Matematica 103, 71–79 (1975) doi:10.1007/BF02414144

Download citation


  • Integral Geometry
  • Kinematic Formula
  • Kinematic Density