Geometriae Dedicata

, Volume 42, Issue 3, pp 355–360

Space tilings and local isomorphism

  • Charles Radin
  • Mayhew Wolff
Article

Abstract

We prove for a large class of tilings that, given a finite tile set, if it is possible to tile Euclideann-space with isometric copies of this set, then there is a tiling with the ‘local isomorphism property’.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aubry, S., ‘Weakly periodic structures and example’,J. Physique (Paris), Coll. C350 (1989), 97–106.MathSciNetGoogle Scholar
  2. 2.
    Bombieri, E. and Taylor, J., ‘Which distributions of matter diffract? An initial investigation’,J. Physique (Paris), Coll. C347 (1986), 3–19.MathSciNetGoogle Scholar
  3. 3.
    Bombieri, E. and Taylor, J., ‘Quasicrystals, tilings, and algebraic number theory’,Contemp. Math. 64 (1987), 241–264, Amer. Math. Soc., Providence.MathSciNetGoogle Scholar
  4. 4.
    Furstenberg, H.,Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton University Press, Princeton, 1981.Google Scholar
  5. 5.
    Grünbaum, B. and Shephard, G. C.,Tilings and Patterns, Freeman, New York, 1986.Google Scholar
  6. 6.
    Mozes, S., ‘Tilings, substitution systems and dynamical systems generated by them’,J. Analyse Math. 53 (1989), 139–186.MATHMathSciNetGoogle Scholar
  7. 7.
    Peyrière, J., ‘Frequency of patterns in certain graphs and in Penrose tilings’,J. Physique (Paris), Coll. C347 (1986), 41–62.MATHGoogle Scholar
  8. 8.
    Radin, C., ‘Tiling, periodicity and crystals’,J. Math. Phys. 26 (1985), 1342–1344.CrossRefMathSciNetGoogle Scholar
  9. 9.
    Radin, C., ‘Correlations in classical ground states’,J. Stat. Phys. 43 (1986), 707–712.CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Radin, C., ‘Disordered ground states of classical lattice models’,Rev. Math. Phys. 3 (1991), 125–135.CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Radin, C., ‘Global order from local sources’,Bull. Amer. Math. Soc. 25 (1991), 335–364.MATHMathSciNetGoogle Scholar
  12. 12.
    Royden, H.,Real Analysis (2nd edn), Macmillan, New York, 1968, pp. 163, 149.Google Scholar
  13. 13.
    Senechal, M. and Taylor, J., ‘Quasicrystals: The view from Les Houches’,Math. Intelligencer 12 (1990), 54–64.MathSciNetGoogle Scholar
  14. 14.
    Wang, H., ‘Dominoes and the AEA case of the decision problem’,Mathematical Theory of Automata (ed. Jerome Fox), Polytechnic Press, New York, 1963, pp. 23–56.Google Scholar
  15. 15.
    Wang, H., ‘Proving theorems by pattern recognition II’,Bell Systs. Tech. J. 40 (1961), 1–41.Google Scholar
  16. 16.
    Wang, H., ‘Notes on a class of tiling problems’,Fund. Math. 82 (1975), 295–305.MATHGoogle Scholar
  17. 17.
    Wang, H.,Computation, Logic, Philosophy: A Collection of Essays, Kluwer, Dordrecht, 1990.Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • Charles Radin
    • 1
  • Mayhew Wolff
    • 2
  1. 1.Mathematics DepartmentUniversity of TexasAustinUSA
  2. 2.Mathematics DepartmentUniversity of CaliforniaBerkeleyUSA

Personalised recommendations