Advertisement

Annali di Matematica Pura ed Applicata

, Volume 98, Issue 1, pp 77–92 | Cite as

The equianharmonic surface and the Hessian polyhedron

  • H. S. M. Coxeter
Article

Summary

This paper develops a new approach to B. Segre's symmetric notation for the 27 lines on a cubic surface, and a presentation for the group of automorphisms of the Pappus configuration 93.

References

  1. [1]
    R. C. Bose -I. M. Chakravarti,Hermitian varieties in a finite projective space PG(N,q 2), Canad. J. Math.,18 (1966), pp. 1161–1182.MathSciNetzbMATHGoogle Scholar
  2. [2]
    H. S. M. Coxeter,The polytopes with regular-prismatic vertex figures, Phil. Trans. Royal Soc., A229 (1930), pp. 329–425.zbMATHGoogle Scholar
  3. [3]
    H. S. M. Coxeter,Some abstract groups, Proc. London Math. Soc. (2),41 (1936), pp. 278–301.zbMATHMathSciNetGoogle Scholar
  4. [4]
    H. S. M. Coxeter,The polytope 2 21,whose twenty-seven vertices correspond to the lines on the general cubic surface, Amer. J. Math.,62 (1940), pp. 457–486.zbMATHMathSciNetGoogle Scholar
  5. [5]
    H. S. M. Coxeter,The collineation groups of the finite affine and projective planes with four lines through each point, Abh. Math. Sem. Univ. Hamburg,2 (1956), pp. 165–177.MathSciNetGoogle Scholar
  6. [6]
    H. S. M. Coxeter,Groups generated by unitary reflections of period two, Canad. J. Math.,9 (1957), pp. 243–272.zbMATHMathSciNetGoogle Scholar
  7. [7]
    H. S. M. Coxeter,Factor groups of the braid group, Proc. Fourth Canadian Mathematical Congress, Toronto, 1959.Google Scholar
  8. [8]
    H. S. M. Coxeter,Introduction to Geometry, New York, 1969.Google Scholar
  9. [9]
    H. S. M. Coxeter,Regular Complex Polytopes, Cambridge, 1973.Google Scholar
  10. [10]
    L. E. Dickson,Linear Groups, Leipzig, 1901.Google Scholar
  11. [11]
    F. E. Eckardt,Über diejenigen Flächen dritten Grades, auf denen sich drei gerade Linien in einem Punkte schneiden, Math. Ann.,10 (1876), pp. 227–272.CrossRefzbMATHMathSciNetGoogle Scholar
  12. [12]
    J. S. Frame,A symmetric representation of the twenty-seven lines on a cubic surface by lines in a finite geometry, Bull. Amer. Math. Soc.,44 (1938), pp. 658–661.zbMATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    T. Gosset,On the regular and semi-regular figures in space of n dimensions, Messenger of Math.,29 (1900), pp. 43–48.Google Scholar
  14. [14]
    D. Hilbert -S. Cohn-Vossen,Anschauliche Geometrie, Berlin, 1932.Google Scholar
  15. [15]
    J. W. P. Hirschfeld,The double-six and the cubic surface with 27 lines, Rendiconti di Mat.,26 (1967), pp. 1–38.Google Scholar
  16. [16]
    C. Jordan,Traité des substitutions et des équations algebriques, Paris, 1870.Google Scholar
  17. [17]
    G. Salmon,A Treatise on the Analytic Geometry of Three Dimensions, vol. II (5th ed.), London, 1915.Google Scholar
  18. [18]
    L. Schläfli,An attempt to determine the twenty-seven lines upon a surface of the third order, Quarterly J. Math.,2 (1858), pp. 55–65, 110–120.Google Scholar
  19. [19]
    P. H. Schoute,On the relation between the vertices of a definite six-dimensional polytope and the lines of a cubic surface, K. Akad. Wetenschappen Amsterdam, Proc. Sec. Sci.,13 (1910), pp. 375–383.Google Scholar
  20. [20]
    F. Schur,Über die durch collineare Grundgebilde erzeugten Curven und Flächen, Math. Ann.,18 (1881), pp. 1–32.CrossRefzbMATHMathSciNetGoogle Scholar
  21. [21]
    B. Segre,The Non-singular Cubic Surfaces, Oxford, 1942.Google Scholar
  22. [22]
    G. C. Shephard,Regular complex polytopes, Proc. London Math. Soc. (3),2 (1952), pp. 82–97.zbMATHMathSciNetGoogle Scholar
  23. [23]
    G. C. Shephard,Unitary groups generated by reflections, Canad. J. Math.,5 (1953), pp. 364–383.zbMATHMathSciNetGoogle Scholar
  24. [24]
    G. C. Shephard -J. A. Todd,Finite unitary reflection groups, Canad. J. Math.,6 (1954), pp. 274–304.MathSciNetzbMATHGoogle Scholar
  25. [25]
    J. A. Todd,Projective and Analytical Geometry, London, 1958.Google Scholar

Copyright information

© Nicola Zanichelli Editore 1974

Authors and Affiliations

  • H. S. M. Coxeter
    • 1
  1. 1.Toronto

Personalised recommendations