Advertisement

Annali di Matematica Pura ed Applicata

, Volume 108, Issue 1, pp 149–159 | Cite as

Saint-Venant's problem for heterogeneous anisotropic elastic solids

  • Dorin Ieşan
Article

Summary

In this paper we give a method to solve Saint-Venant's problem for inhomogeneous and anisotropic elastic cylinders when the elastic coefficients are independent of the axial coordinate. The cross-section of the cylinder is assumed to be occupied by different inhomogeneous and anisotropic elastic materials.

Keywords

Axial Coordinate Elastic Material Elastic Solid Elastic Coefficient Elastic Cylinder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [1]
    A. J. C. B. de Saint-Venant,Mémoire sur la torsion des prismes, Mém. savants étrangers,14 (1856), pp. 233–560.Google Scholar
  2. [2]
    A. J. C. B. de Saint-Venant,Mémoire sur la flexion des prismes, J. Math., 2-me sér.,1 (1856), pp. 89–189.Google Scholar
  3. [3]
    J. Nowinski -S. Turski,A study of states of stress in inhomogeneous bodies (in Polish), Arch. Mech. Stos.,5 (1953), pp. 397–414.MathSciNetGoogle Scholar
  4. [4]
    A. Radu,Echilibrul barelor elastice izotrope neomogene, An. St. Univ. Iaşi, MatematicĂ,13 (1967), pp. 421–442.zbMATHGoogle Scholar
  5. [5]
    G. Fichera,Existence theorems in elasticity, Handbuch der Physik, vol. VIa/2, Springer, Berlin - Heidelberg - New York (1972).Google Scholar
  6. [6]
    E. Betti,Teoria della elasticità, Il Nuovo Cimento, ser. 2,9 (1872),10 (1873).Google Scholar
  7. [7]
    D. Graffi,Sui teoremi di reciprocità nei fenomeni non stazionari, Atti Accad. Sc. Ist. Bologna, ser. 11,10 (1963), pp. 33–40.zbMATHMathSciNetGoogle Scholar
  8. [8]
    D. Iesan,Saint-Venant's problem for inhomogeneous and anisotropic elastic bodies, J. Elasticity6 (1976) (in press).Google Scholar
  9. [9]
    D. Iesan,On Saint-Venant's problem in micropolar elasticity, Int. J. Engng. Sci.,9 (1971), pp. 879–888.CrossRefzbMATHGoogle Scholar
  10. [10]
    N. I. Mushelishvili,Some basic problems of the mathematical theory of elasticity, Groningen (1953).Google Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata 1975

Authors and Affiliations

  • Dorin Ieşan
    • 1
  1. 1.IassyRomania

Personalised recommendations