Advertisement

Annali di Matematica Pura ed Applicata

, Volume 108, Issue 1, pp 97–107 | Cite as

Punti esplosivi (radianti o vibranti) delle equazioni differenziali ordinarie del 2o ordine

  • Beniamino Segre
Article
  • 19 Downloads

Summary

It is given in § 1.

Bibliografia

  1. [1]
    G. Armellini,Sopra l'integrabilità delle equazioni differenziali della meccanica, Rend. Acc. Naz. dei Lincei, (V)21 (1912), pp. 177–182 ≡Selecta, Acc. Naz. dei Lincei (1974), pp. 3–8.zbMATHGoogle Scholar
  2. [2]
    O. Borůvka,Lineare Differentialtransformationen 2. Ordnung, Berlin, Veb Deutscher Verlag der Wissenschaften (1967).Google Scholar
  3. [3]
    O. Borůvka,Eléments géométriques dans la théorie des transformations des équations différentielles linéaires et ordinaires du deuxième ordre, Atti Convegno Internaz. Geom. Differenziale, Zanichelli-Swets & Zeitlinger (1970), pp. 97–108.Google Scholar
  4. [4]
    O. Borůvka,Sur quelques compléments à la théorie de Floquet pour les équations différentielles du deuxième ordre, Ann. di Mat., (4)102 (1975), pp. 71–77.Google Scholar
  5. [5]
    L. Cesari,Asymptotic Behavior and Stability Problems in Ordinary Differential Equations, Berlin, Springer, 3rd ed. (1971).Google Scholar
  6. [6]
    R. Conti -D. Graffi -G. Sansone,The Italian contribution to the theory of non-linear ordinary differential equations and to non-linear mechanics during the years 1951–1961, Roma, Consiglio Naz. delle Ricerche (1962).Google Scholar
  7. [7]
    J. R. Graef -P. W. Spikes,Continuability, Boundedness and Asymptotic Behavior of solution of x″+q(t)f(x)=r(t), Ann. di Mat., (4)101 (1974), pp. 307–320.MathSciNetGoogle Scholar
  8. [8]
    R. P. Jahagirdar -B. S. Lalli,Oscillatory Properties of Certain Second Order Non-linear Differential Equations, Ann. di Mat., (4)101 (1974), pp. 375–382.MathSciNetGoogle Scholar
  9. [9]
    G. Sansone,Equazioni differenziali nel campo reale, Bologna, Zanichelli (2a ed.), vol. I (1948), vol. II (1949).Google Scholar
  10. [10]
    F. Tricomi,Equazioni differenziali, Torino, Einaudi (1948).Google Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata 1975

Authors and Affiliations

  • Beniamino Segre
    • 1
  1. 1.Roma

Personalised recommendations