Advertisement

Annali di Matematica Pura ed Applicata (1923 -)

, Volume 116, Issue 1, pp 217–315 | Cite as

Solutions périodiques d'équations de type hyperbolique

  • Gérard Hecquet
Article
  • 17 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [1]
    Aziz A. K. Periodic solutions of hyperbolic partial differential equations, Proc. Amer. Math. Soc.,17 (1966), pp. 557–566.MathSciNetCrossRefGoogle Scholar
  2. [1]
    Aziz A. K. -Brodsky S. L. Periodic solutions of a class of weakly non linear hyperbolic partial differential equations, Siam J. Math. Anal.,3, no. 2 (1972), pp. 300–313.MathSciNetCrossRefGoogle Scholar
  3. [1]
    Aziz A. K. -Horak M. G. Periodic solutions of hyperbolic partial differential equations in the large, Siam J. Math. Anal.,3, no. 1 (1972), pp. 176–182.MathSciNetCrossRefGoogle Scholar
  4. [1]
    Aziz A. K. -Meyers A. M. Periodic solutions of hyperbolic partial differential equations in a strip, Trans. Amer. Math. Soc.,146 (1969), pp. 167–178.MathSciNetCrossRefGoogle Scholar
  5. [1]
    Periodic solutions of hyperbolic differential equations, International Symposium on Nonlinear Differential Equations and Nonlinear Mechanics (Colorado Spring, 1961), Academic Press, New York (1963), pp. 33–57.CrossRefGoogle Scholar
  6. [2]
    Existence in the large of periodic solutions of hyperbolic partial differential equations, Archive Rat. Mech. Anal.,20 (1965), pp. 170–190.MathSciNetCrossRefGoogle Scholar
  7. [3]
    A criterion for the existence in a strip of periodic solutions of hyperbolic partial differential equations, Rend. Circ. Mat. Palermo, (2)14 (1965), pp. 1–24.MathSciNetzbMATHGoogle Scholar
  8. [4]
    The implicit function theorem in functional analysis, Duke Mathematical Journal,33 (1966), pp. 417–440.MathSciNetCrossRefGoogle Scholar
  9. [5]
    Smoothness properties of periodic solution in the large of nonlinear hyperbolic differential systems, Funkcialaj Ekvacioj,9 (1966), pp. 325–338.MathSciNetzbMATHGoogle Scholar
  10. [6]
    Césari L. Periodic solutions of nonlinear hyperbolic partial differential equations, C.I.M.E., Bressanone dal 4 al 13 giugno 1972, pp. 22–32, Edizioni Cremonese, Roma (1973).Google Scholar
  11. [7]
    Functional analysis and differential equations, Studies in Applied Mathematics,5 (1969), pp. 143–155. (Ces deux dernières références résument les articles précédents de L. Césari).MathSciNetGoogle Scholar
  12. [8]
    Césari L. Asymptotic behavior and stability problems in ordinary differential equations, 3a ed., Springer, Berlin (1971).CrossRefGoogle Scholar
  13. [1]
    Solutions périodiques pour certaines équations hyperboliques, An. Sti. Univ. Iasi,14 (1968), pp. 327–357.MathSciNetzbMATHGoogle Scholar
  14. [2]
    Periodic solutions of the Tricomi problem, Michigan Mathematical Journal,16 (1969), pp. 331–348.MathSciNetCrossRefGoogle Scholar
  15. [1]
    Haimovici A. Periodic solutions of hyperbolic partial differential equations, Annali di Matematica,48 (1974), pp. 297–309.MathSciNetCrossRefGoogle Scholar
  16. [1]
    Periodic solutions of a class of hyperbolic equations containing a small parameter, Arch. Rational Mech. Anal.,23 (1966), pp. 380–398.MathSciNetCrossRefGoogle Scholar
  17. [2]
    Hale J. K. Oscillations in nonlinear systems, Mac Graw-Hill Book Company Inc. (1963).Google Scholar
  18. [1]
    Comptes Rendus,273, série A (1971), p. 712.MathSciNetGoogle Scholar
  19. [2]
    Comptes Rendus,276, série A (1973), p. 997.MathSciNetGoogle Scholar
  20. [3]
    Comptes Rendus,276, série A (1973), p. 1047.MathSciNetGoogle Scholar
  21. [1]
    Glick, I. I. On an analog of the Euler Cauchy polygon method for the partial differential equation \(u_{x_1 ,,..,x_n } = f(x_1 ,...,x_n ,u,...,u_{x_2 ,...,x_n } )\), Contributions to differential equations, vol. II (1963), pp. 1–59.Google Scholar
  22. [1]
    Mawhin J. - Rouche N.:Equations différentielles ordinaires, tome 2, Masson et Cie (1973).Google Scholar
  23. [1]
    Vibrations non linéaires et théorie de la stabilité, Springer, Berlin (1966).zbMATHGoogle Scholar
  24. [2]
    Roseau M. Solutions périodiques ou presque périodiques des systèmes différentiels de la mécanique non linéaire, C.I.S.M., Cours and Lectures no. 44, Udine (1970).Google Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata (1923 -) 1978

Authors and Affiliations

  • Gérard Hecquet
    • 1
  1. 1.RonchinFrance

Personalised recommendations