Advertisement

Annali di Matematica Pura ed Applicata

, Volume 12, Issue 1, pp 13–32 | Cite as

Geometries involving affine connections and general linear connections

An extension of the recent einstein-mayer geometry
  • A. D. Michal
  • J. L. Botsford
Article
  • 27 Downloads

Summary

Part I of this paper is concerned with the theory of differential invariants of a symmetric affine connection and a general linear connection of theKönig type. Part II deals with a geometry in which the components of the affine connection areChristoffel symbols, and the general linear connection is of a special sort. This section can be considered in part as an extension of theEinstein-Mayer (5) geometry,

Keywords

Linear Connection Affine Connection Differential Invariant Special Sort Symmetric Affine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. (1).
    Robert König, « Jahresberichte der Deutschen Mathematiker Vereinigung », vol. 28, 1919, pp. 213–228.zbMATHGoogle Scholar
  2. (2).
    L. Schlesinger, « Mathematische Annalen », vol. 99, 1928, pp. 413–434.CrossRefzbMATHMathSciNetGoogle Scholar
  3. (3).
    J. A. Schouten, « Proceedings Koninklijke Akad. v. Wetenschappen », Amsterdam, vol. 27, 1924, pp. 407–424.Google Scholar
  4. (4).
    J. H. C. Whitehead, « Transactions of the Amer. Mathem. Society », vol. 33, 1931, pp. 191–209.CrossRefzbMATHMathSciNetGoogle Scholar
  5. (5).
    A. Einstein andW. Mayer, « Sitzungsberichte der Preuss. Akad. », Dec. 1931, pp. 541–547. Ibid., April 14, 1932.Google Scholar
  6. (6).
    O. Veblen,Invariants of Quadratic Differential Forms, « Cambridge Tract », 1927. See also,O. Veblen andT. Y. Thomas, « Transactions of the Amer. Mathem. Society », vol. 25, 1923, pp. 561–608.Google Scholar
  7. (7).
    L. P. Eisenhart,Non-Riemannian Geometry, « Colloquium Lectures of the Amer. Mathem. Society », 1927.Google Scholar
  8. (8).
    A. D. Michal, « Transactions of the Amer. Mathem. Society », vol. 29, 1927, pp. 612–646; « Proceedings of the National Academy », vol. 14, 1928, pp. 746–754; « Bulletin of the Amer. Mathem. Society », vol. 36, 1930, pp. 541–546; « Amer. Mathem. Monthly », vol. 37, 1930, pp. 529–533; « Tôhoku Mathem. Journal », 1931; « Proceedings of the National Academy », vol. 17, 1931, pp. 132–136.CrossRefzbMATHMathSciNetGoogle Scholar
  9. (9).
    A. D. Michal andT. Y. Thomas, « Annals of Mathematics », vol. 28, 1927, pp. 196–236. Ibid., vol. 28, 1927, pp. 631–688.MathSciNetGoogle Scholar
  10. (10).
    E. Bortolotti, « Annali di Mathem. », Serie IV, Tomo VIII, 1930–1931, pp. 54–101; « Annals of Mathematics », vol. 32, 1931, pp. 361–377.Google Scholar
  11. (11).
    T. Levi-Civita, « Rendiconti del Circolo Mathematico di Palermo », vol. 42, 1917, pp. 173–205. This paper initiated the theory of parallel displacements in Riemannian geometry. See also his book,The Absolute Differential Calculus (Blackie & Son, 1927).Google Scholar

Copyright information

© Nicola Zanichelli 1934

Authors and Affiliations

  • A. D. Michal
    • 1
  • J. L. Botsford
    • 1
  1. 1.PasadenaU. S. A.

Personalised recommendations