Advertisement

Completion of Čech's and Kauchy's Results on the analysis of surfaces on which a canonical line passes through a fixed point

  • 14 Accesses

Summary

E. Čech's and J. Kaucky's[3] results on the analysis of surfaces on which a canonical line passes through a fixed point are completed by demonstrating the following theorems:

  1. 1)

    To every first-type solution, namely, the solutions β u 3 v 3 which satisfy the differential equation(B) of this paper, correspond 1 projective rotation surfaces mutually projectively applicable.

  2. 2)

    A projective rotation surfaces may allow at least one canonical line which passes through a fixed point. This yields a new property of these surfaces and completes the theorem of W. Lingenberg[9].

  3. 3)

    A projective rotation surface can admit at most two canonical lines passing through respective fixed points.

  4. 4)

    On surfaces corresponding to second-type solutions, namely β v 3 ≠ β u 3 and (k2 − 1)(k+3) ≠ 0, no canonical line passes through a fixed point, in contradiction to Kaucky's result[3].

  5. 5)

    With the exception of the surface denoted in this paper by (R), on surfaces which admit 2 transformation into themselves two canonical lines pass through respective fixed points.

  6. 6)

    On the surfaces denoted here by (R), Green's canonical line passes through a fixed point; it is the only surface which satisfies equation(B) and the system(C 1) and(C 2) with this property[11].

Bibliography

  1. [1]

    G. Fubini -E. Čech,Geometria proiettiva differenziale, t. 1, Zanichelli, Bologna, 1926.

  2. [1']

    G. Fubini -E. Čech,Introduction à la géomètrie projective différentielle des surfaces, Paris, Gauthier-Villars, 1931.

  3. [2]

    E. Čech,Sur les surfaces dont toutes les courbes de Segre sont planes, Publication de la Faculté des Sci. de l'Université Masaryk, no. 11 (1922).

  4. [3]

    J. Kaucky,Etude de surfaces dont une droite canonique passe par un point fixe, ibidem, no. 109 (1929).

  5. [4]

    F. Marcus,Sur les reseaux de Koenigs, Revue de Math. pures et appliquées, t. 2 (Bucarest, 1957), pp. 555–559.

  6. [5]

    F. Marcus,Sur les surfaces de rotations projectives, Bull. de la classe des Sci. de l'Acad. Roy. de Belgique, 5e série,58 (1972–73), pp. 862–871.

  7. [6]

    Buchin Su,On a certain class of surfaces whose Darboux curves of one system are conics, The Tôhoku Math. Journal,36 (1933), pp. 241–252.

  8. [7]

    G. Fubini,Fondamenti di geometria proiettivo-differenziale, Rendiconti Circolo Mat. di Palermo, t. 43 (1919), pp. 1–46.

  9. [7']

    E. Bompiani,Rappresentazioni geodetico-proiettive fra due superficie, Annali di Mat. pura ed applicata, serie IV, t. 3 (1926), pp. 171–188.

  10. [8]

    F. Marcus,Quelques contributions à l'étude des deformations infinitésimales d'une surface en elle-même, Studü si Cercetari Stünţifice, Matematica Anul.,12 (1961), pp. 69–94.

  11. [9]

    W. Lingenberg,Zur Differentialgeometrie der Flächen die eine eingliedrige projektive Gruppe in sich gestatent etc., Math. Zts.,66 (1957), pp. 409–446.

  12. [10]

    F. Marcus,Sur les surfaces qui admettent ∞ 2 transformations projectives en elles-mêmes, Accad. Naz. dei XL, serie IV,24–25 (1974).

  13. [11]

    F. Marcus,On the results of J. Kaucky concerning the problem of the determination of surfaces for which a canonical line passes through a fixed point, in course of publication.

  14. [12]

    O. Boruvka,Sur certain types of surfaces qui sont projectivement applicables sur ellesmêmes, Publication de la Fac. des Sci. de l'Université Masaryk, Brno, 1924.

Download references

Author information

Additional information

Dedicated to ProfessorB. Segre

Entrata in Redazione il 27 luglio 1976.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Marcus, F. Completion of Čech's and Kauchy's Results on the analysis of surfaces on which a canonical line passes through a fixed point. Annali di Matematica 114, 319–330 (1977). https://doi.org/10.1007/BF02413793

Download citation

Keywords

  • Differential Equation
  • Rotation Surface
  • Projective Rotation