A domain perturbation problem for elliptic operators

  • 40 Accesses

  • 2 Citations


Eigenvalue problems with null boundary data are considered for second order symmetric linear elliptic operators in bounded domains of Euclidean n-space. The main theorems give estimates for the perturbation of the eigenvalues and eigenfunctions under the deformation of attaching an ɛ-handle to the domain. In particular it is proved that the variation of every eigenvalue under such a deformation is of order ϕ(ɛ), where ϕ denotes the reciprocal of the parametrix.


  1. [1]

    G. F. D. Duff,Partial Differential Equations, University of Toronto, 1956.

  2. [2]

    F. Riesz - B. Sz-Nagy,Functional Analysis, Blackie and Son, 1956.

  3. [3]

    M. Riesz,L'intégrale de Riemann-Liouville et le problème de Cauchy, Acta Math.,81 (1949), pp. 1–223.

  4. [4]

    M. Schiffer - D. C. Spencer,Functionals of Finite Riemann Surfaces, Princeton University, 1954.

  5. [5]

    C. A. Swanson,On spectral estimation, Bull. Amer. Math. Soc.,68 (1962), pp. 33–35.

Download references

Author information

Additional information

Entrata in Redazione il 23 giugno 1976.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Swanson, C.A. A domain perturbation problem for elliptic operators. Annali di Matematica 114, 229–240 (1977).

Download citation


  • Eigenvalue Problem
  • Bounded Domain
  • Elliptic Operator
  • Boundary Data
  • Domain Perturbation