Advertisement

Annali di Matematica Pura ed Applicata

, Volume 114, Issue 1, pp 27–67 | Cite as

General boundary value problems for ordinary differential equations with small parameter

  • Leonid S. Frank
Article

Keywords

Differential Equation Ordinary Differential Equation Small Parameter General Boundary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [1]
    K. Friedrichs,Asymptotic phenomena in mathematical physics, Bull. Amer. Math. Soc.,61, 6 (1955), pp. 79–94.MathSciNetGoogle Scholar
  2. [2]
    M. I. Vishik -L. A. Lyusternik,Regular degeneration and boundary layer for linear differential equations with small parameter, Uspeki Mat. Nauk,12 (1957), no. 5(77), pp. 3–122: English Transl., Amer. Math. Soc. Transl., (2),20 (1962), pp. 239–364.zbMATHGoogle Scholar
  3. [3]
    A. Demidov,Elliptic pseudodifferential boundary value problems with small parameter in the coefficients of the leading operator, Math. USSR, Sbornik20 (1973), p. 439–463.CrossRefGoogle Scholar
  4. [4]
    J. L. Lions -E. Magenes,Problèmes aux limites non homogènes et application, vol. 1, Ed. Dunod, Paris (1968).zbMATHGoogle Scholar
  5. [5]
    L. Hormander,Pseudodifferential operators, Comm. Pure Appl. M th.,18, no. 3 (1965), pp. 501–517.MathSciNetGoogle Scholar
  6. [6]
    J. J. Kohn -L. Nirenberg,An algebra of pseudodifferential operators, Comm. Pure Appl. Math. J.,24 (1957), pp. 269–305.MathSciNetGoogle Scholar
  7. [7]
    P. D. Lax,Asymptotic solutions of oscillatory initial value problems, Duke Math. J.,18, no. 1, 2 (1965), pp. 473–508.Google Scholar
  8. [8]
    V. V. Kucerenko,The commutation formula for an h −1-pseudodifferential operator with rapidly oscillating exponential function in the complex phase case, Mat. Sbornik,94 (136) (1974), no. 1; English transl.: Math. USSR Sbornik,23 (1974), no. 1, pp. 85–109.Google Scholar
  9. [9]
    A. Melin - J. Sjostrand,Fourier integral operators with complex-valued phase functions (to appear)Google Scholar
  10. [10]
    M. A. Naimark,Linear differential operators, Ed. « Nauka », Moscow (1969).Google Scholar
  11. [11]
    W. Wasow,Asymptotic expansions for ordinary differential equations, Interscience publishers, New York - London - Sidney (1965).zbMATHGoogle Scholar
  12. [12]
    V. A. Trenogin,Development and application of Vishlik-Liusternik's method, Uspechi Matem. Nauk.,25 (1970), no. 2, pp. 123–156zbMATHMathSciNetGoogle Scholar
  13. [13]
    F. John,A priori estimates, geometric effects and asymptotic behavior, Bull. of the Amer. Math. Society,81, no. 6 (1975), pp. 1013–1023.zbMATHCrossRefGoogle Scholar
  14. [14]
    M. I. Vishik -L. A. Lynsternik,Solution of some perturbed problems, Uspechi Mat. Nauk,15:3 (93) (1960), pp. 3–80.Google Scholar
  15. [15]
    P. C. Fife,Singularly perturbed elliptic boundary value problems, Annali di Matematica Pura ed Applicata, Serie 4,20 (1971), pp. 99–148.Google Scholar
  16. [16]
    L. S. Frank,Coercive boundary value problems with small parameter, C. R. Acad. Sci. Paris, t. 282 (10 mai 1976), Sériè A, pp. 1109–1111.zbMATHGoogle Scholar
  17. [17]
    L. S. Frank,Singular perturbations and difference operators, C. R. Acad. Sci., No. 11 (8 Nov. 1976), Sériè A, pp. 859–861.Google Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata 1977

Authors and Affiliations

  • Leonid S. Frank
    • 1
  1. 1.JerusalemIsrael

Personalised recommendations