Advertisement

Annali di Matematica Pura ed Applicata

, Volume 71, Issue 1, pp 73–83 | Cite as

Inversive distance

  • H. S. M. Coxeter
Article

Summary

Any two non-intersecting circles have a kind of distance that is invariant for inversion, namely, the natural logarithm of the ratio of the radii (the larger to the smaller) of two concentric circles into which the given circles can be inverted. When the inversive plane is used as a conformal model for hyperbolic space [3, p 266], the inversive distance between two non-intersecting circles is equal to the hyperbolic distance between the corresponding ultra-parallel planes.

Keywords

Natural Logarithm Hyperbolic Space Concentric Circle Conformal Model Hyperbolic Distance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [1]
    J. L. Coolidge,A treatise on the circle and the sphere (Oxford, 1916).Google Scholar
  2. [2]
    H. S. M. Coxeter,Introduction to geometry (New York, 1961).Google Scholar
  3. [3]
    -- --,Non-Euclidean geometry (5th ed., Toronto 1965).Google Scholar
  4. [4]
    Peter Dembowski andD. R. Hughes,On finite inversive planes, J. London Math. Soc. 40 (1965), 171–182.MathSciNetGoogle Scholar
  5. [5]
    László Fejes Tóth,Regular figures (New York, 1964).Google Scholar
  6. [6]
    E. W. Hobson,A treatise on plane trigonometry (6th ed., Cambridge, 1924).Google Scholar
  7. [7]
    J. H. Jeans,The mathematical theory of electricity and magnetism (5th ed., Cambridge, 1925).Google Scholar
  8. [8]
    Mario Pieri,Nuovo principii di geometria delle inversioni, Giornale di Math. (3), 49 (1911), 49–96; 50 (1912), 106–140.zbMATHGoogle Scholar
  9. [9]
    Hans Schwerdtfeger,Geometry of complex numbers (Toronto, 1962).Google Scholar
  10. [10]
    Jacob Steiner,Gesammelte Werke 1 (Berlin, 1882).Google Scholar
  11. [11]
    Giovanni Vailati,Sulle relazioni di posizione tra punti d'una linea chiusa, Rivista di Mat. 5 (1895), 75–78, 183–185Google Scholar
  12. [12]
    B. L. van der Waerden andL. J. Smid,Eine Axiomatik der Kreisgeometrie und der Laguerregeometrie, Math. Ann. 110 (1935), 754–776.Google Scholar

Copyright information

© Nicola Zanichelli Editore 1966

Authors and Affiliations

  • H. S. M. Coxeter
    • 1
  1. 1.Toronto

Personalised recommendations