Advertisement

Annali di Matematica Pura ed Applicata

, Volume 99, Issue 1, pp 209–220 | Cite as

Equilibrium and congruence on a rotation surface

  • Carlo Morosi
Article

Summary

Equilibrium and congruence are analyzed for surfaces applicable on a rotation surface: congruence conditions are shown to be in an essential number of two, linked by a differential identity, and the displacement field induced by a congruent strain is obtained. Then the solution of the homogeneous equilibrium equation is determined, when the equilibrium problem is the adjoint problem of the congruence.

Keywords

Equilibrium Equation Displacement Field Equilibrium Problem Congruence Condition Adjoint Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Sunto

Si analizzano i problemi dell'equilibrio e della congruenza per superfici applicabili su superfici di rotazione: si mostra che le condizioni di congruenza essenziali sono due, legate da una identità differenziale, e si determina lo spostamento indotto da una deformazione congruente. A partire dalle condizioni di congruenza si determina poi la soluzione dell'equazione di equilibrio omogenea, nella ipotesi che il problema dell'equilibrio sia il problema aggiunto della congruenza.

References

  1. [1]
    B. Finzi, Rend. Ist. Lomb. Sc. e Lett.,63 (1930).Google Scholar
  2. [2]
    F. Graiff, Annali Matem.,84 (1970).Google Scholar
  3. [3]
    L. Finzi, Rend. Acc. Naz. Lincei,20 (1956).Google Scholar
  4. [4]
    F. Graiff, Rend. Acc. Naz. Lincei,26 (1959).Google Scholar
  5. [5]
    E. Storchi, Rend. Acc. Naz. Lincei,7, 227 (1949);8, 116 (1950);8, 326 (1950).MathSciNetGoogle Scholar
  6. [6]
    C. Cercignani, Rend. Ist. Lomb. Sc. e Lett.,105 (1971).Google Scholar
  7. [7]
    C. Truesdell, Proc. Acad. Sc. (U.S.A.),43 (1957).Google Scholar
  8. [8]
    C. Morosi, Rend. Ist. Lomb. Sc. e Lett.107 (1973).Google Scholar
  9. [9]
    L. Bianchi,Geometria differenziale, vol. I, Zanichelli, (1927).Google Scholar
  10. [10]
    L. P. Eisenhart,Differential geometry, Princeton University Press, (1940).Google Scholar
  11. [11]
    F. Graiff, Rend. Ist. Lomb. Sc. e Lett.,92 (1957).Google Scholar
  12. [12]
    B. Finzi, Rend. Acc. Naz. Lincei,19 (1934).Google Scholar
  13. [13]
    F. Graiff, Annali Matem.,89 (1971).Google Scholar
  14. [14]
    E. Tonti, Meccanica,5, (1970).Google Scholar
  15. [15]
    E. Tonti, Rend. Acc. Naz. Lincei,52 (nota II) (1972).Google Scholar

Copyright information

© Nicola Zanichelli Editore 1974

Authors and Affiliations

  • Carlo Morosi
    • 1
  1. 1.Milano

Personalised recommendations