Advertisement

Annali di Matematica Pura ed Applicata

, Volume 99, Issue 1, pp 191–208 | Cite as

Spazi a-tonnelés

  • Giuseppe Muni
Article
  • 19 Downloads

Sunto

Si introduce la nozione di spazioa-tonnelé che generalizza quella di spazio numerabilmente tonnelé e si estendono agli spazi numerabilmente tonnelés i recentissimi risultati di M. Valdivia([17]).

Bibliografia

  1. [1]
    N. Bourbaki,Espaces Vectoriels Topologiques, chap. 1 e 2, Hermann, Paris, 1966.Google Scholar
  2. [2]
    N. Bourbaki,Espaces Vectoriels Topologiques, chap. 3 e 4, Hermann Paris, 1964.Google Scholar
  3. [3]
    M. De Wilde,Sur le sous-espaces de codimension finie d'un espace lineaire à semi-normes, to appear in Bull. Soc. R. Sciences, Liége.Google Scholar
  4. [4]
    J. Dieudonné,Sur les propriétes de permanence de certains espaces vectoriels topologiques, Ann. Soc. Pol. Math.,25 (1952), pp. 50–55.zbMATHGoogle Scholar
  5. [5]
    D. J. H. Garling,A generalized form of inductive-limit topology for vector spaces, Proc. London, Soc. (3),14 (1964), pp. 1–28.zbMATHMathSciNetGoogle Scholar
  6. [6]
    J. Horváth,Topological Vector Spaces and Distributions, vol. I, Addison-Wesley Publishing Company, 1966.Google Scholar
  7. [7]
    T. Husain,Two new classes of locally convex spaces, Math. Ann.,166 (1966), pp. 289–299.CrossRefzbMATHMathSciNetGoogle Scholar
  8. [8]
    J. Köthe,Topological Vector Spaces, I, Springer-Verlag, Berlin, 1969.Google Scholar
  9. [9]
    M. Levin -S. Saxon,A note on the inheritance of properties of locally convex spaces by subspaces of countable codimension, Proc. of the Am. Math. Soc.,29, no. 1 (June 1971), pp. 97–102.CrossRefMathSciNetGoogle Scholar
  10. [10]
    G. Muni,Insiemi irriducibili di seminorme ecc., Ann. di Mat. pura e appl. Serie IV,93 (1972), pp. 127–171.CrossRefzbMATHMathSciNetGoogle Scholar
  11. [11]
    G. Muni,Seminorme semicontinue inferiormente (in corso di stampa sugli « Annali di Matematica »).Google Scholar
  12. [12]
    W. Roelcke,On the finest locally convex topology agreeing with a given topology on a sequence of absolutely convex sets, Math. Ann.,198 (1972), pp. 57–80.CrossRefzbMATHMathSciNetGoogle Scholar
  13. [13]
    S. A. Saxon,Nuclear and product spaces, Baire-like spaces, and the strongest locally convex topology, Math. Ann.,197 (1972), pp. 87–106.CrossRefzbMATHMathSciNetGoogle Scholar
  14. [14]
    S. A. Saxon -M. Levin,Every countable-codimensional subspaces of a barrelled space is barrelled, Proc. of the Am. Math. Soc.,29, no. 1 (June 1971), pp. 91–96.CrossRefMathSciNetGoogle Scholar
  15. [15]
    F. Treves,Topological Vector Spaces, Distributions and Kernels, Academic Press, New York, 1967.Google Scholar
  16. [16]
    F. Treves,Locally Convex Spaces and Linear Partial Differential Equations, Springer-Verlag, Berlin, 1967.Google Scholar
  17. [17]
    M. Valdivia,Absolutely convex sets in barrelled spaces, Ann. Inst. Fourier, Grenoble,21 (1971), pp. 3–13.zbMATHMathSciNetGoogle Scholar

Copyright information

© Nicola Zanichelli Editore 1974

Authors and Affiliations

  • Giuseppe Muni
    • 1
  1. 1.Bari

Personalised recommendations