Isometry of Riemannian manifolds to spheres

  • Lynn L. Ackler
  • Chuan-Chih Hsiung


Some known conditions for a compact Riemannian n-manifold Mn, n>2, which has constant scalar curvature R and admits an infinitesimal nonisometric conformal transformation, to be isometric to an n-sphere are generalized to manifolds with nonconstant R.


Riemannian Manifold Scalar Curvature Conformal Transformation Constant Scalar Curvature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [1]
    R. L. Bishop -S. I. Goldberg,A characterization of the Euclidean sphere, Bull. Amer. Math. Soc.,72 (1966), pp. 122–124.MathSciNetzbMATHGoogle Scholar
  2. [2]
    C. C. Hsiung,Vector fields and infinitesimal transformations on Riemannian manifolds with boundary, Bull. Soc. Math. France,92 (1964), pp. 411–434.zbMATHMathSciNetGoogle Scholar
  3. [3]
    C. C. Hsiung,On the group of conformal transformations of a compact Riemannian manifold, Proc. Nat. Acad. Sci. U.S.A.,54 (1965), pp. 1509–1513.zbMATHMathSciNetGoogle Scholar
  4. [4]
    C. C. Hsiung,On the group of conformal transformations of compact Riemannian manifold, II, Duke Math. J.,34 (1967), pp. 337–341.CrossRefzbMATHMathSciNetGoogle Scholar
  5. [5]
    C. C. Hsiung,On the group of conformal transformations of a compact Riemannian manifold, III, J. Differential Geometry,2 (1968), pp. 185–190.zbMATHMathSciNetGoogle Scholar
  6. [6]
    C. C. Hsiung -L. R. Mugridge,Conformal changes of metrics on a Riemannian manifold, Math. Z.,119 (1971), pp. 179–187.CrossRefMathSciNetGoogle Scholar
  7. [7]
    C. C. Hsiung -L. W. Stern,Conformality and isometry of Riemannian manifolds to sphres, Bull. Amer. Math. Soc.,76 (1970), pp. 1253–1256 (announcement); Trans. Amer. Math. Soc.,161 (1972), pp. 65–73.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    J. Lelong-Ferrand,Transformations conformes et quasiconformes des variétés riemanniennes; application à la démonstration d'une conjecture de A. Lichnerowicz, C. R. Acad. Sci. Paris,269 (1969), pp. 583–586.zbMATHMathSciNetGoogle Scholar
  9. [9]
    A. Lichnerowicz,Geometrie des groupes de transformations, Dunod, Paris, 1958.zbMATHGoogle Scholar
  10. [10]
    A. Lichnerowicz,Sue lrs transformation conformes d'une variété riemannienne compacte, C. R. Acad. Sci. Paris,259 (1964), pp. 697–700.zbMATHMathSciNetGoogle Scholar
  11. [11]
    M. Obata,Certain conditions for a Riemannian manifold to be isometric with a sphere, J. Math. Soc. Japan,14 (1962), pp. 333–340.zbMATHMathSciNetCrossRefGoogle Scholar
  12. [12]
    M. Obata,Quelques inégalites intégrales sur une variété riemannienne compacte, C. R. Acad. Sci. Paris,264 (1967), pp. 123–125.zbMATHMathSciNetGoogle Scholar
  13. [13]
    M. Obata,The conjectures on conformal transformations of Riemannian monifolds, Bull. Amer. Math. Soc.,77 (1971), pp. 265–270 (announcement); J. Differential Geometry,6 (1971), pp. 247–258.zbMATHMathSciNetGoogle Scholar
  14. [14]
    K. Yano,On harmonic and Killing vector fields, Ann. of Math.,55 (1952), pp. 38–45.CrossRefzbMATHMathSciNetGoogle Scholar
  15. [15]
    K. Yano,On Riemannian manifolds with constant scalar curvature admitting a conformal transformation group, Proc. Nat. Acad. Sci. U.S.A.,55 (1966), pp. 472–476.zbMATHMathSciNetGoogle Scholar
  16. [16]
    K. Yano,On Riemannian admitting an infinitesimal conformal transformation, Mat. Z.,113 (1970), pp. 205–214.CrossRefzbMATHGoogle Scholar
  17. [17]
    K. Yano -M. Obata,Sur le group de transformations conformes d'une variété de Riemann dont le scalaire de courbure est constant, C.R. Acad. Sci. Paris,260 (1965), pp. 2698–2700.MathSciNetzbMATHGoogle Scholar
  18. [18]
    K. Yano -M. Obata,Conformal changes of Riemannian metrics, J. Differential Geometry,4 (1970), pp. 53–72.MathSciNetzbMATHGoogle Scholar
  19. [19]
    K. Yano -S. Sawaki,Riemannian manifolds admitting a conformal transformation group, J. Differential Geometry,2 (1968), pp. 161–184.MathSciNetzbMATHGoogle Scholar

Copyright information

© Nicola Zanichelli Editore 1974

Authors and Affiliations

  • Lynn L. Ackler
    • 1
  • Chuan-Chih Hsiung
    • 2
  1. 1.Fitchburg
  2. 2.Bethlehem

Personalised recommendations