Advertisement

Annali di Matematica Pura ed Applicata

, Volume 84, Issue 1, pp 375–386 | Cite as

Uniform approximation of continuous functions by rational functions

  • Gaetano Fichera
Article

Summary

Viene data la condizione necessaria e sufficiente perchè le funzioni razionali di una variabile, aventi poli di ordine prefissato in assegnati punti del piano complesso, costituiscano un sistema completo iu Co (0, 1).

Keywords

Continuous Function Rational Function Uniform Approximation Piano Complesso 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [1]
    K. T. Weierstrass,Ueber analytische Darstellbarkeit sogenannter willkürlicher Funktionen reeller Argumente, Sitzungsb. der K. Preuss. Akad. der Wiss. zu Berlin, 1885, pp. 633–639 and pp. 789–805.Google Scholar
  2. [2]
    G. Szegö Ueber « dichte » Funktionenfamilien, Ber. über die Verhand. der K. Sachsischen Gesell. der Wissenschaften zu Leipzig, Mathem. phys. Klasse, 1927, vol. 78, pp. 373–380.Google Scholar
  3. [3]
    O. Szász,Ueber die Approximation stetiger Funktionen durch gegebene Funktionenfolgen, Mathem. Annalen vol. 104, 1930–31, pp. 155–160.CrossRefzbMATHGoogle Scholar
  4. [4]
    P. Porcelli,Uniform completeness of sets of reciprocals of linear functions, Duke Math. Journal, vol. 20, 1953, pp. 185–193.CrossRefMathSciNetGoogle Scholar
  5. [5]
    —— ——,Uniform completeness of sets of reciprocals of linear functions II, Duke Math. Journal, vol. 21, 1954, pp. 595–597.CrossRefzbMATHMathSciNetGoogle Scholar
  6. [6]
    C. G. G. Van Herk,A class of completely monotonic functions, Compositio Mathematica, vol. 9, 1951, pp. 1–79.zbMATHMathSciNetGoogle Scholar
  7. [7]
    G. Fichera,Sull'approssimazione delle funzioni olomorfe con funzioni razionali, Rend. Semin. Matem. Univ. e Politec. Torino, vol. 27, 1967–68, pp. 5–16.MathSciNetGoogle Scholar
  8. [8]
    -- --,Approximation of analytic functions by rational functions with prescribed poles, to appear on Communications on pure and appl. Mathem.Google Scholar
  9. [9]
    E. Hille — R. S. Phillips,Functional Analysis and Semi-Groups, Amer. Math. Soc. Colloquium Publ. vol. XXXI, 1957.Google Scholar
  10. [10]
    A. N. Kolmogorov,Sur les fonctions harmoniques conjuguées et les séries de Fourier, Fundam. Mathem. vol. 7 1925.Google Scholar
  11. [11]
    A. Zygmund,Trigonometrical Series, vol. 1st, 2nd ed. Cambridge Univ. Press, 1959.Google Scholar

Copyright information

© Nicola Zanichelli Editore 1970

Authors and Affiliations

  • Gaetano Fichera
    • 1
  1. 1.Roma

Personalised recommendations