Advertisement

Annali di Matematica Pura ed Applicata

, Volume 84, Issue 1, pp 61–71 | Cite as

Sul teorema di Riesz-Thorin

  • Carlo Miranda
Article

Summary

We give an extension of the Riesz-Thorin theorem to linear operators which map Morrey spaces in spaces of the same or similar type.

Bibliografia

  1. [1]
    S. Campanato,Proprietà di hölderianità di alcune classi di funzioni, Ann. Sc. N. Sup. Pisa 17 (1963) 175–188zbMATHMathSciNetGoogle Scholar
  2. [2]
    —— ——.Proprietà di una famiglia di spazi fanzionali, Ann. Sc. N. Sap. Pisa 18 (1964) 137–160.zbMATHMathSciNetGoogle Scholar
  3. [3]
    —— ——,Teoremi di interpolazione per trasformazioni che applicano L p in C h, α Ann. Sc. N. Sup. Pisa 18 (1964) 345–360.zbMATHMathSciNetGoogle Scholar
  4. [4]
    —— ——,Su un teorema di interpolazione di G. Stampacchia, Ann. Sc. N. Sup. Pisa 20 (1966) 649–652.zbMATHMathSciNetGoogle Scholar
  5. [5]
    S. Campanato eM. K. V. Murthy,Una generalizzazione del teorema di Riesz-Thorin, Ann. Sc. N. Sup. Pisa 19 (1965) 87–100.MathSciNetGoogle Scholar
  6. [6]
    F. John eL. Nirenberg,On functions of bounded mean oscillation. Comm. Pure Appl. Math 14 (1961) 415–426.MathSciNetGoogle Scholar
  7. [7]
    G. N. Meyers,Means oscillations over cubes and Hölder continuity, Proc. Amer. Math. Soc. 15 (1964) 717–721.CrossRefzbMATHMathSciNetGoogle Scholar
  8. [8]
    J. Peetre,On convolution operators leaving L p,λ spaces invariant, Ann. Math. Pura Appl. 72 (1966) 295–304.CrossRefzbMATHMathSciNetGoogle Scholar
  9. [9]
    S. Spanne,Some function spaces defined using mean oscillation over cubes, Ann. Sc. N. Sup. Pisa 19 (1965) 293–306.MathSciNetGoogle Scholar
  10. [10]
    —— ——,Sur l'interpolation entre les spaces £ , Ann. Sc. N. Sup. Pisa 20 (1966) 625–648.zbMATHMathSciNetGoogle Scholar
  11. [11]
    G. Stampacchia,£ (p, λ) spaces and interpolation, Comm. Pure Appl. Math. 17 (1964) 293–306.zbMATHMathSciNetGoogle Scholar
  12. [12]
    —— ——.The spaces £ (p, λ),N (p, λ) and interpolation, Ann. Sc. N. Sup. Pisa 19 (1965) 443–462.zbMATHMathSciNetGoogle Scholar
  13. [13]
    A. Zygmund,Trigonometric series, Cambridge University Press (1959).Google Scholar

Copyright information

© Nicola Zanichelli Editore 1970

Authors and Affiliations

  • Carlo Miranda
    • 1
  1. 1.Napoli

Personalised recommendations