Sulla influenza dell'effetto Hall nella propagazione di onde magnetofluidodinamiche iu un fluido incomprimibile

  • 34 Accesses

  • 5 Citations


Si esamina l'influenza dell'effetto Hall sulla propagazione ondosa it un fluido incomprimibile descritto dalle equazioni della magnetofluidodinamica nello schema del continuo.

Nella parte I si studia dapprima la propagazione di onde piane di piccola ampiezza e poi quella delle onde di ampiezza finita. Nella parte II l'indagine é estesa alle onde cilindriche e nella parte III infine si discute la propagazione di onde piane e cilindriche nel caso in cui nello stato imperturbato il fluido non sia in quiete, bensì in moto uniforme.

Nel lavoro si tiene conto delle azioni dissipative della viscosità e della conducibilità elettrica finita.


In this paper we discuss wave propagation in an incompressible conducting fluid considered as a continuous medium taking account of the Hall effect.

In Part I we first consider the propagation of plane waves of small amplitude and secondly waves of finite amplitude.

In Part II the discussion is extended to cylindrical waves and in Part III the propagation of plane and cylindrical waves is examined when in the unperturbed state the fluid is not at rest, but in a state of uniform motion.

The dissipative effects of viscosity and finite electrical conductivity are taken into account in the present paper.


  1. [1]

    L. Spitzer,Physics of fully ionized gases, Interscience, New York, 1962.

  2. [2]

    T. G. Cowling,Magnetohydrodynamics, Interscience, New York, 1957.

  3. [3]

    T. Kihara,Macroscopic foundation of plasma dynamics, J. Phys. Soc. Japan, 13, 1958, pp. 473–481.

  4. [4]

    V. B. Baranov, G. A. Liubimov,On the form of the generalized Ohm's law in a completely ionzed gas, P.M. M. 25, 1961, pp. 694–700.

  5. [5]

    G. A. Liubimov,On the form of Ohm's law in magnetohydrodynamics, P.M.M. 25, 1961, pp. 913–929.

  6. [6]

    H. Alfvén,Cosmical electro-dynamics, Oxford, 1963.

  7. [7]

    V. C. A. Ferraro, C. Plumpton,Magneto-fluid mechanics, Oxford, 1966.

  8. [8]

    R. Jancel, Th. Kahan,Électrodynamique des plasmas, Tome 1, Dunod, Paris, 1963.

  9. [9]

    G. W. Sutton, A. Sherman,Engineering magnetohydrodynamics, Mc Graw-Hill, New York, 1965.

  10. [10]

    E. H. Holt, R. E. Haskel,Foundations of plasma dynamics, McMillan, New York, 1965.

  11. [11]

    C. Agostinelli,Magnetofluidodinamica, Monografia CNR, Cremonese, Roma, 1966.

  12. [12]

    N. G. Van Kampen, B. U. Felderhof,Theoretical methods in plasma Physics, North-Holland, Amsterdam, 1967.

  13. [13]

    B. S. Tanenbaum,Plasma Physics, Mc Graw-Hill, New York, 1967.

  14. [14]

    I. B. Chekmarev,The steady flow of a weakly ionized gas between parallel plates assuming anisotropic conductivity, P.M.M., 25, 1961, pp. 701–707.

  15. [15]

    E. G. Sakhnovskii, Ia. S. Ufliand,The influence of anisotropic conductivity on the unsteady motion of a conducting gas in a plane channel, P.M.M., 26, 1962, pp. 806–815.

  16. [16]

    Ia. S. Ufliand,Nonstationary, plane, parallel flow of a viscous electrically-conducting gas with anisotropic conductivity,P.M.M., 26, 1962, pp. 1267–1275.

  17. [17]

    L. Rai,Hall effects on thermal instability in a rotating layer of a conducting fluid, Canadian J. Phys., 46, 1968, pp. 2533–2537.

  18. [18]

    S. C. Agrawal,Rayleigh-Taylor instability with Hall-currents, J. Phys. Soc. Japan, 26, 1969, pp. 561–565.

  19. [19]

    R. Becker,Teoria della elettricità, Sansoni, Firenze, 1949.

  20. [20]

    C. Agostinelli,Magnetofluidodinamica, Boll. U.M.I., 20, 1965, pp. 1–79.

  21. [21]

    Pai Shih-I,Magnetogasdynamics and plasma dynamics, Springer-Verlag, Wien, 1962.

  22. [22]

    K. V. Roberts, J. B. Taylor,Magnetohydrodynamic equations for finite Larmor radius, Phys. Rev. Letters, 8, 1962, pp. 197–198.

  23. [23]

    R. J. Hosking,New instabilities due to Hall effect, Phys. Rev. Letters, 15, 1965, pp. 344–345.

  24. [24]

    S. P. Talwar, G. L. Kalra,Combined Taylor and Helmholtz instability in hydromagnetics including Hall effect, J. Plasma Physics, 1, 1967, pp. 145–155.

  25. [25]

    A. K. Sen, C. K. Chou,The Hall effect and Kelvin-Helmholtz instability in a plasma, Canadian J. Phys., 46, 1968, pp. 2557–2561.

  26. [26]

    A. K. Sen, C. K. Chou,Gravitational instability with Hall effect in a plasma, ibidem,, pp. 2553–2556.

  27. [27]

    K. P. Das,Stability of gravitating fluid layer of infinite extent but finite thickness including Hall effect, Canadian J. Phys., 46, 1968, pp. 2201–2205.

  28. [28]

    H. K. Hans,Magnetogravitational instability of an unbounded plasma with Hall current and Larmor radius, Ann. d'Astrophysique, 29, 1966, pp. 339–341.

  29. [29]

    K. V. Brushlinskii, A. Morozov,On the evolutionary of equations of magnetohydrodynamics taking the Hall effect into account, P.M.M., 32, 1968, 979–982.

  30. [30]

    J. W. Dungey,Cosmic electrodynamics, Cambridge, 1958.

  31. [31]

    B. Lehnert,Magnetohydrodynamic waves under the action of the Coriolis force, Astrophy. J., 119, 1954, pp. 647–654.

  32. [32]

    R. Kulsrud,General stability theory in plasma Physics, Rend. Scuola Int. di Fisica E. Fermi, XXV, Academic Press, 1964 pagg. 54–96.

  33. [33]

    I. B. Bernstein, E. A. Frieman, M. D. Kruskal, R. M. Kulsrud,An energy principle for hydromagnetic stability problems, Proc. Roy. Soc., A 244, 1958, pp. 17–40.

  34. [34]

    A. Jeffrey,Magnetohydrodynamics, Oliver and Boyd, London, 1966.

  35. [35]

    S. Chandrasekar,Hydrodynamic and hydromagnetic stability, Oxford, 1961.

  36. [36]

    W. F. Hughes, F. J. Young,The electromagnetodynamics of fluids, J. Wiley, New York, 1966.

  37. [37]

    R. Nardini,Magnetofluidodinamica, C.I.M.E. 1962, 1a Conferenza, Cremonese, Roma, 1962.

  38. [38]

    S. A. Kaplan,The effect of anisotropic conductivity in a magnetic field on the structure of a shock wave in magnetohydrodynamics, Zh. Exsp. Teoret. Fiz., 38, 1960, pp. 252–253.

  39. [39]

    G. A. Liubimov,The structure of magnetohydrodynamic shock waves in a gas with ani sotropic conductivity, P.M.M., 25, 1961, pp. 266–276.

  40. [40]

    A. G. Kulikovskii, G. A. Liubimov,The structure of a magnetohydrodynamic shock wave in a gas with an anisotropic conductivity, P.M.M. 26, 1962, pp. 1197–1199.

  41. [41]

    B. P. Leonard,Hall currents in magnetohydrodynamic shock waves, Phys. Fluids 9, 1966, 917–926.

  42. [42]

    R. J. Tayler,The influence of the Hall effect on a simple hydromagnetic stability problem, Nuclear Fusion, Suppl. Part 3, 1962, pp. 877–881.

  43. [43]

    A. A. Ware,Instability waves in magnetically confined plasmas, Plasma Physics, 3, 1961, pp. 93–97.

  44. [44]

    G. L. Kalra, S. P. Talwar,Magnetogravitational instability of unbounded plasma with Hall effect, Ann. d'Astrophysique, 27, 1964, pp. 102–103.

  45. [45]

    R. J. Hosking,Stability of a self-gravitating plasma cylinder including Hall effect, Phys. Fluids, 10, 1967, 588–90.

  46. [46]

    P. P. J. M. Schram, T. Tasso,Persistence of MHD-stability in the two fluid model, Nuclear Fusion, 7, 1967, 91–98.

  47. [47]

    G. W. Garrison, H. A. Hassan,Screw instability in a linear Hall accelerator, Phys. Fluids, 10, 1967, pp. 711–718.

  48. [48]

    N. K. Nayyar, S. K. Trehan,Effect of Hall current on Rayleigh-Taylor instability of a plasma, Phys. Rev. Letters, 17, 1966, pp. 526–528.

  49. [49]

    R. J. Hosking,Rayleigh-Taylor problem for a Hall plasma, J. Plasma Phys., 2, 1968, pp. 613–616.

  50. [50]

    M. R. Raghavachar,Thermal instability in the presence of Hall current, Astron. and Astrophy., 2, 1969, pp. 18–21.

  51. [51]

    E. Y. Yantovskii,Longitudinal electromotive forces and Hall effect for channel flow of an ionized gas, Magnetohydrodynamics, The Faraday Press Inc., New York, 1, 1965, pp. 45–49.

  52. [52]

    E. N. Zelichenko, T. E. Milleryan, N. I. Pol'skii,Optimal regimes of magnetogasdynamics channel flows with Hall effects, ibidem, pp. 50–53.

  53. [53]

    H. Hasimoto, G. S. Janowitz,Hall effect in the two-dimensional flow along an insulating plane, Phys. Fluids, 8, 1965, pp. 2234–2239.

  54. [54]

    J. T. Yen,Magnetoplasmadynamic channel flow and energy conversion with Hall current, Phys. Fluids, 7, 1964, pp. 723–729.

  55. [55]

    G. M. Bam-Zelikovich,Effect of Hall currents on the flow of a conducting gas at high flow velocities, J. Appl. Mech. Tech. Phys., 1965, n. 3, pp. 16–21.

  56. [56]

    A. I. Morozov, L. S. Solov'ev,The plane flow of an ideally conducting compressible liquid taking the Hall effect into account, Soviet Phys. Tech. Phys., 9, 1965, n. 7.

  57. [57]

    H. Naruse,The Hall effect on the magnetohydrodynamic flow near a stagnation point, J. Phys. Soc. Japan, 22, 1967, pp. 638–653.

  58. [58]

    J. Y. T. Tang, R. Seebass,The effect of tensor conductivity on continuum magnetogasdynamic flows, Quart. Appl. Math., 26, 1968, pp. 311–320.

  59. [59]

    E. V. Locke, J. McCune,Growth rates for axial magneto-acoustic waves in a Hall generator, AIAA J., 4, 1966, pp, 1748–1751.

  60. [60]

    J. Rosciszewski,Acceleration process in the Hall current device, Phys. Fluids, 10, 1967, pp. 1095–1099.

  61. [61]

    J. B. Burlock, P. Brockman, R. V. Hess, D. R. Brooks,Measurement of velocities and acceleration mechanism for coaxial Hall accelerators, AIAA J., 5, 1967, pp. 558–561.

  62. [62]

    M. Ohji,Response of magneto-fluid dynamic turbulence to an imposed strong magnetic field in the presence of Hall effect, J. Phys. Soc. Japan, 21, 1966, pp. 167–172.

  63. [63]

    G. Helmis,Investigation on electrodynamics of electrically conducting media in turbulent motion taking account the Hall effect, Monatsber. Deutschen Akad. Wiss. Berlin, 10, 1968, pp. 280–291.

  64. [64]

    G. A. Liubimov,On the solution of certain problems in magnetohydrodynamics with anisotropic conductivity, P.M.M., 26, 1962, pp. 789–805.

  65. [65]

    E. M. Drobyshevskii,Effect of Hall current on the rotation of a plasma in crossed fields, Soviet Physics-Tech. Phys., 8, 1964, pp. 997–1000.

  66. [66]

    H. Hasimoto,Swirl of a conducting gas due to the Hall effect, J. Phys. Soc. Japan, 19, 1964, pp. 1457–1463.

  67. [67]

    L. A. Panchenko,Influence of the Hall effect on hypersonic flow past a wedge, J. Appl. Mech. Tech. Phys., 1965, n. 1, pp. 17–21.

  68. [68]

    A. C. Kolb, P. C. Thonemann, E. Hintz,Transverse fields, Hall currents, and electron drift velocities in a θ-pinch, Phys. Fluids, 8, 1965, pp. 1005–1006.

  69. [69]

    Pau-Chang Lu,Rayleigh's problem in magnetogasdynamics with Hall effect, AIAA J., 3, 1965, pp. 2219–2224.

  70. [70]

    I. Kim,The Hall effect in an electrically conducting fluid for variable magnetic field and high magnetic Reynolds numbers, J. Appl. Mech. Tech. Phys., 1965, n. 3, pp. 22–24.

  71. [71]

    C. L. Chen,Hall effect in a collision-dominated gaseous plasma, J. Appl. Phys., 37, 1966, pp. 2205–2210.

  72. [72]

    E. A. Witalis,Hall effect influence on a highly conducting fluid, Plasma Physics, 9, 1967, pp. 415–421.

  73. [73]

    R. W. Porter, A. B. Cambel,Hall effect in flight magnetogasdynamics, AIAA J., 5, 1967, pp. 2208–2213.

  74. [74]

    E. G. Broadbent,Magnetohydrodynamic wave propagation from a localized source including Hall effect, Phil. Trans. Roy. Soc. London, Ser. A 263, 1968, pp. 119–147.

  75. [75]

    E. A. Witalis,MHD flow distortion caused by strong Hall effect, Plasma Physics, 10, 1968, pp. 109–116.

  76. [76]

    L. E. Kalikhman,Elements of magnetogasdynamics, Saunders, Philadelphia, 1967.

Download references

Author information

Additional information

A Bruno Finzi nel suo70mo compleanno.

Lavoro eseguito nell'ambito dell'attività dei Gruppi di Ricerca Matematica del C.N.R. (Anno 1969) presso l'Istituto di Matematiche Applicate « U. Dini » della Facoltà di Ingegneria dell'Università di Pisa.

Entrata in Redazione il 20 ottobre 1969.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mattei, G. Sulla influenza dell'effetto Hall nella propagazione di onde magnetofluidodinamiche iu un fluido incomprimibile. Annali di Matematica 84, 1–31 (1970).

Download citation