Annali di Matematica Pura ed Applicata

, Volume 94, Issue 1, pp 257–268 | Cite as

Oscillation criteria for second order nonlinear differential equations



Various sufficient conditions are obtained which guarantee that all continuable solutions of (1.1) y″+q(t)y′+p(t)f(y)=0 are oscillatory. No explicit sign assumptions are made on p(t) although certain integral conditions are assumed to hold with regard to f(y), p(t) and q(t). Examples are given of the form p(t) = λ/tμ + (βsint)/tα, λ, β, μ, α>0.


Differential Equation Integral Condition Nonlinear Differential Equation Continuable Solution Oscillation Criterion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [1]
    F. V. Atkinson,On second order nonlinear oscillation, Pac. J. Math.,5 (1955), pp. 643–647.zbMATHGoogle Scholar
  2. [2]
    N. P. Bhatia,Some oscillation theorems for second order differential equations, J. Math. Anal. Appl.,15 (1966), pp. 442–446.CrossRefzbMATHMathSciNetGoogle Scholar
  3. [3]
    L. E. Bobisud,Oscillation of nonlinear second order equations, Proc. Amer. Math. Soc.,23 (1969), pp. 501–505.CrossRefzbMATHMathSciNetGoogle Scholar
  4. [4]
    L. E. Bobisud,Oscillation of nonlinear differential equations with small nonlinear damping, SIAM J. Appl. Math.,18 (1970), pp. 74–76.CrossRefzbMATHMathSciNetGoogle Scholar
  5. [5]
    L. E. Bobisud,Oscillation of solutions of damped nonlinear equations, SIAM J. Appl. Math.,18 (1970), pp. 601–606.CrossRefMathSciNetGoogle Scholar
  6. [6]
    T. Burton -R. Grimmer,On continuability of solutions of second order differential equations, Proc. Amer. Math. Soc.,29 (1971), pp. 277–283.CrossRefMathSciNetGoogle Scholar
  7. [7]
    C. V. Coffman -D. F. Ulrich,On the continuation of solutions of a certain nonlinear differential equation, Monatsh., Math.,71 (1967), pp. 385–392.CrossRefMathSciNetGoogle Scholar
  8. [8]
    L. Erbe,Oscillation theorems for second order nonlinear differential equations, Proc. Amer. Math. Soc.,24 (1970), pp. 811–814.CrossRefzbMATHMathSciNetGoogle Scholar
  9. [9]
    L. Erbe,Oscillation theorem for second order linear differential equations, Pac. J. Math.,35 (1970), pp. 337–343.zbMATHMathSciNetGoogle Scholar
  10. [10]
    P. Hartman,Ordinary Differential Equations, Wiley, New York, 1964.Google Scholar
  11. [11]
    A. G. Kartsatos,Properties of bounded solutions of nonlinear equations of second order, Proc. Amer. Math. Soc.,19 (1968), pp. 1057–1059.CrossRefzbMATHMathSciNetGoogle Scholar
  12. [12]
    I. T. Kiguradze,A note on the oscillation of solutions of the equazion u″ + a(t)|u| nsignu=0, Časopis Pěst. Mat.,92 (1967), pp. 343–350. (Russian).zbMATHMathSciNetGoogle Scholar
  13. [13]
    G. G. Legatos -A. G. Kartsatos,Further results on oscillation of solutions of second order equations, Math. Japonicae,14 (1969), pp. 67–73.MathSciNetGoogle Scholar
  14. [14]
    J. W. Macki -J. W. S. Wong,Oscillation theorems for linear second order differential equations, Proc. Amer. Math. Soc.,20 (1969), pp. 67–72.CrossRefMathSciNetGoogle Scholar
  15. [15]
    R. A. Moore,The behavior of solutions of a linear differential equation of second order, Pac. J. Math.,5 (1955), pp. 125–145.zbMATHGoogle Scholar
  16. [16]
    P. Waltman,An oscillation criterion ofr a nonlinear second order equation, J. Math. Anal. Appl.,10 (1965), pp. 439–441.CrossRefzbMATHMathSciNetGoogle Scholar
  17. [17]
    D. Willet,On the oscillatory behavior of the solutions of second order linear differential equations, Ann. Polon. Math.,21 (1969), pp. 175–194.MathSciNetGoogle Scholar
  18. [18]
    J. S. W. Wong,On second order nonlinear oscillation, Funkcial. Ekvac.,11 (1969), pp. 207–234.zbMATHGoogle Scholar
  19. [19]
    T. Yoshizawa,Oscillatory property of solutions of second order differential equations, Tôhuku Math. Journ.,22 (1970), pp. 619–634.zbMATHMathSciNetGoogle Scholar

Copyright information

© Nicola Zanichelli Editore 1972

Authors and Affiliations

  • L. Erbe
    • 1
  1. 1.EdmontonCanada

Personalised recommendations