Advertisement

Structure theorems for group-varieties

  • Iacopo Barsotti
Article

Keywords

Structure Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Bibliography

  1. [1]
    I. Barsotti,Algebraic correspondences between algebraic varieties, « Ann. of Math. », 52, 1950, p. 427. See alsoErrata, ibid., 53, 1951, p. 587.CrossRefzbMATHMathSciNetGoogle Scholar
  2. [2]
    —— ——Local properties of algebraic correspondences, « Amer. Math. Soc. Trans. », 71, 1951, p. 349).CrossRefzbMATHMathSciNetGoogle Scholar
  3. [3]
    —— ——Intersection theory for cycles of an algebraic variety, « Pacific Journ. of Math. », 2, 1952, p. 473, (3).zbMATHMathSciNetGoogle Scholar
  4. [4]
    —— ——A note on abelian varieties, « Rend. Circ. Mat. di Palermo », 2, 1953, p. 236.zbMATHMathSciNetGoogle Scholar
  5. [5]
    C. Chevalley,Théorie des groupes de Lie; II,Groupes algébriques, « Act. Scien. Ind. », No. 1152, Paris, 1951).Google Scholar
  6. [6]
    W. L. Chow,On the quotient variety of an abelian variety, « Proc. Nat. Acad. Scie. U.S.A. », 38, 1952, p. 1039).zbMATHGoogle Scholar
  7. [7]
    F. Conforto,Funzioni abeliane e matrici di Riemann, « Corsi R. Ist. Naz. Alta Mat. », Roma, 1942.Google Scholar
  8. [8]
    H. Hasse andF. K. Schmidt,Noch eine begründung der theorie der höheren differentialquotienten in einem algebraischen funktionenkörper einer unbestimmten, « Journ. Reine Angew. Math. », 177, 1937, p. 215.zbMATHGoogle Scholar
  9. [9]
    A. Jaeger,Eine algebraische theorie vertauschbarer differentiationen für körper beliebiger charakteristik, « Journ. Reine Angew. Math. », 190, 1952, p. 1.zbMATHMathSciNetGoogle Scholar
  10. [10]
    S. Koizumi,On the differential forms of the first kind on algebraic varieties, « Journ. Math. Soc. Japan », 2, 1951, p. 273).MathSciNetGoogle Scholar
  11. [11]
    E. R. Kolchin,Algebraic matric groups and the Picard-Vessiot theory of homogeneous linear ordinary differential equations, « Ann. of Math. », 49, 1948, p. 1.CrossRefzbMATHMathSciNetGoogle Scholar
  12. [12]
    S. Nakano,On invariant differential forms on group varieties, « Journ. Math. Soc. Japan », 2, 1951, p. 216.zbMATHMathSciNetCrossRefGoogle Scholar
  13. [13]
    M. Rosenlicht,Equivalence relations on algebraic curves, « Ann. of Math. », 56, 1952, p. 169.CrossRefzbMATHMathSciNetGoogle Scholar
  14. [14]
    —— ——Differentials of the second kind for algebraic function fields of one variable, « Ann. of Math. », 57, 1953, p. 517.CrossRefzbMATHMathSciNetGoogle Scholar
  15. [15]
    F. Severi,Funzioni quasi abeliane, « Pontif. Acad. Scien. Scripta Varia », 4, 1947.Google Scholar
  16. [16]
    A. Weil,Variétés abéliennes et courbes algébriques, « Act. Scien. Ind. », No. 1064, Paris, 1948.Google Scholar

Copyright information

© Swets & Zeitlinger B. V. 1955

Authors and Affiliations

  • Iacopo Barsotti
    • 1
  1. 1.Los AngelesUSA

Personalised recommendations