An invariant for certain smooth manifolds

  • James EellsJr.
  • Nicolaas H. Kuiper
Article

Summary

Starting with Hirzebruch's A-genus we define a numerical invariantμ for certain (4k-1)-manifolds. We produce examples to show howμ can distinguish differentiable structures on certain topological manifolds.

Bibliography

  1. [1]
    A. Borel andF. Hirzenbruch,Characteristic classes and homogeneous spaces III « Am. J. Math. » 82 (1960) 491–504.Google Scholar
  2. [2]
    J. Eells and.N. H. Kuiper,Manifolds which are like projective planes, (In preparation).Google Scholar
  3. [3]
    F. Hirzebruch,Neue topologische Methoden in der algebralschen Gemetrie. Springer 1956.Google Scholar
  4. [4]
    J, Milnor,On manifolds homeomorphic to the 7-sphere, « Annals. of Math. » 64 (1956), 399–405.CrossRefMATHMathSciNetGoogle Scholar
  5. [5]
    J. Milnor,Differentiable structures on spheres, « Amer. J. Math. » 81 (1959), 962–972.MATHMathSciNetGoogle Scholar
  6. [6]
    J Milnor,Differentiable manifolds which are homotopy spheres, « Mimeo. notes. » Princeten Univ. 1959.Google Scholar
  7. [7]
    N. Shimada,Differentiable structures on the 15-sphere and Pantrijagin classes of certain manifolds, « Nagoya Math. J. » 12 (1957), 59–69.MATHMathSciNetGoogle Scholar
  8. [8]
    S. Smale, The generalized Poincaré conjecture in higher dimensions, « Bull. A.M.S. » 66 (1960), 373–375. See also mineo. notes, University of California, Berkeley, 1961.MATHMathSciNetCrossRefGoogle Scholar
  9. [9]
    N. Steernod,The topology of fibre bundles. Princeton 1951.Google Scholar
  10. [10]
    I. Tamura,Homeomorphy classification of total spaces of sphere bundles over spheres « J. Math. Soc. Japan » 10 (1958), 29–43.MATHMathSciNetCrossRefGoogle Scholar
  11. [11]
    R Thom, Espaces fibrés en sphères et carrés de Steenrod, « Ann. Sci. Ecol. norm. sup. » 69 (1952), 109–182.MATHMathSciNetGoogle Scholar
  12. [12]
    G. Hirsch,La géomètrie projective et la topologie des espaces fibrés, « Colloque Inter. de Topologie Algébrique » Paris (1949), 35–42.Google Scholar

Copyright information

© Nicola Zanichelli Editore 1962

Authors and Affiliations

  • James EellsJr.
    • 1
  • Nicolaas H. Kuiper
    • 2
    • 3
  1. 1.Columbia UniversityNew York
  2. 2.LandbcuwhogeschoolWageningenNetherlands
  3. 3.Northwestern UniversityEvanston

Personalised recommendations