Discrete imbedding theorems and Lebesgue constants

  • A. A. Yudin
  • V. A. Yudin


The order of growth of the Lebesgue constant for a “hyperbolic cross” is found:
$$L_R = \smallint _{T^2 } \left| {\sum\nolimits_{0< \left| {v_1 v_2 } \right| \leqslant R^2 } {e^{2\pi ivx} } } \right|dx\begin{array}{*{20}c} \smile \\ \frown \\ \end{array} R^{1/_2 } , R \to \infty $$
. Estimates are obtained by applying a discrete imbedding theorem. It is proved that among all convex domains in E2, the square gives rise to a Lebesgue constant with the slowest growth ln2R.


Slow Growth Convex Domain Lebesgue Constant Imbed Theorem 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    V. A. Il'in, “Problems of localization and convergence for Fourier series with respect to fundamental systems of functions of the Laplace operator,” Usp. Mat. Nauk,23, No. 2, 61–120 (1968).MATHGoogle Scholar
  2. 2.
    K. I. Babenko, “On mean convergence of multiple Fourier series and the asymptotics of the Dirichlet kernel of the spherical means,” Preprint No. 52, Inst. Prikl. Mat. Akad. Nauk SSSR, Moscow (1971).Google Scholar
  3. 3.
    V. A. Yudin, “Behavior of Lebesgue constants,” Mat. Zametki,17, No. 3, 401–405 (1975).MATHMathSciNetGoogle Scholar
  4. 4.
    E. T. Copson, Asymptotic Expansions, Cambridge Univ. Press.Google Scholar
  5. 5.
    G. H. Hardy and J. E. Littlewood, “Some new properties of Fourier constants,” Math. Ann.,97, 159–209 (1926).MathSciNetGoogle Scholar
  6. 6.
    S. B. Stechkin, “Some remarks on trigonometric polynomials,” Usp. Mat. Nauk,10, No. 1, 159–166 (1955).MATHGoogle Scholar
  7. 7.
    K. Hoffman, Banach Spaces of Analytic Functions, Prentice-Hall (1962).Google Scholar

Copyright information

© Plenum Publishing Corporation 1978

Authors and Affiliations

  • A. A. Yudin
    • 1
    • 2
  • V. A. Yudin
    • 1
    • 2
  1. 1.Vladimirskii Pedagogic InstituteUSSR
  2. 2.Moscow Power InstituteUSSR

Personalised recommendations