Some boundary value problems for differential forms on compact riemannian manifolds
Article
- 157 Downloads
- 21 Citations
Summary
Methods based on trace theorems and transposition are applied to some boundary value problems for differential forms on compact Riemannian manifolds. We obtain compatibility conditions of a classical type for the solvability of these problems in various Sobolev spaces.
Keywords
Riemannian Manifold Sobolev Space Differential Form Compatibility Condition Classical Type
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- [1]N. Aronszajn -A. Krzywicki -J. Szarski,A unique continuation theorem for exterior differential forms on Riemannian manifolds, Arkiv for Math.,4 (1962), pp. 417–453.MathSciNetGoogle Scholar
- [2]L. Cattabriga,Su un problema al contorno relativo al sistema di equazioni di Stokes, Rend. Sem. Mat. Padova,31 (1961), pp. 1–33.MATHMathSciNetGoogle Scholar
- [3]P. E. Conner,The Neumann's problem for differential forms on Riemannian manifolds, Mem. Amer. Math. Soc.,20 (1956), p. 56.MathSciNetGoogle Scholar
- [4]G. F. D. Duff,Differential forms in manifolds with boundary, Ann. Math.,56 (1952), pp. 115–127.CrossRefMATHMathSciNetGoogle Scholar
- [5]G. F. D. Duff -D. C. Spencer,Harmonic tensors on riemannian manifolds with boundary, Ann. Math.,56 (1) (1952), pp. 128–156.CrossRefMathSciNetGoogle Scholar
- [6]J. Eells -Ch. B. Morrey,A variational method in the theory of harmonic integrals, Ann. of Math.,63 (1956), pp. 91–128.CrossRefMathSciNetGoogle Scholar
- [7]K. O. Friedrichs,The identity of weak and strong extensions of differential operators, Trans. Amer. Math. Soc.,55 (1944), pp. 132–151.CrossRefMATHMathSciNetGoogle Scholar
- [8]K. O. Friedrichs,On differential forms on riemannian manifolds, Comm. Pure Appl. Math.,8 (4) (1955), pp. 551–590.MATHMathSciNetGoogle Scholar
- [9]M. P. Gaffney,Hilbert space methods in the theory of harmonic integrals, Trans. Amer. Math. Soc.,78 (1955), pp. 420–444.CrossRefMathSciNetGoogle Scholar
- [10]V. Georgescu,On Hodge-Kodaira-de Rham decomposition theorems, Stud. Cerc. Mat., to appear (in roumanian).Google Scholar
- [11]G. Geymonat,Sui problemi ai limiti per i sistemi lineari ellittici, Ann. Mat. Pura Appl., (IV),69 (1965), pp. 207–284; andSu alcuni problemi ai limiti per i sistemi lineari ellittici secondo Petrowski, Le Matematiche,20 (1965), pp. 211–253.MATHMathSciNetGoogle Scholar
- [12]T. Kato,Perturbation theory for linear operators, Springer-Verlag, Berlin - Heidelberg - New York, 1966.Google Scholar
- [13]J. L. Lions -E. Magenes,Nonhomogeneous boundary value problems and applications, Grundlehren181, Springer-Verlag, Berlin - Heidelberg - New York, 1972.Google Scholar
- [14]J. L. Lions -E. Magenes,Problèmes aux limites non homogènes II, Ann. Inst. Fourier,11 (1961), pp. 137–178.MathSciNetGoogle Scholar
- [15]Ch. B. Morrey,A variational method in the theory of harmonic integrals II, Amer. Journ. Math.,78 (1956), pp. 137–170.MATHMathSciNetGoogle Scholar
- [16]Ch. B. Morrey,Multiple integrals in the calculus of variations, Grundlehren130, Springer-Verlag, Berlin - Heidelberg - New York, 1966.Google Scholar
- [17]L. Nirenberg,Remarks on strongly elliptic partial differential equations, Comm. Pure Appl. Math.,8 (4) (1955), pp. 648–674.Google Scholar
- [18]R. Palais,Seminar on the Atiyah-Singer index theorem, Princeton University Press, 1965.Google Scholar
- [19]G. de Rham,Variétés différentiables, Hermann, Paris, 1960.Google Scholar
- [20]L. Schwartz,Théorie des distributions, Hermann, Paris, 1966.Google Scholar
Copyright information
© Fondazione Annali di Matematica Pura ed Applicata 1979