Annali di Matematica Pura ed Applicata

, Volume 122, Issue 1, pp 159–198 | Cite as

Some boundary value problems for differential forms on compact riemannian manifolds

  • V. Georgescu
Article

Summary

Methods based on trace theorems and transposition are applied to some boundary value problems for differential forms on compact Riemannian manifolds. We obtain compatibility conditions of a classical type for the solvability of these problems in various Sobolev spaces.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    N. Aronszajn -A. Krzywicki -J. Szarski,A unique continuation theorem for exterior differential forms on Riemannian manifolds, Arkiv for Math.,4 (1962), pp. 417–453.MathSciNetGoogle Scholar
  2. [2]
    L. Cattabriga,Su un problema al contorno relativo al sistema di equazioni di Stokes, Rend. Sem. Mat. Padova,31 (1961), pp. 1–33.MATHMathSciNetGoogle Scholar
  3. [3]
    P. E. Conner,The Neumann's problem for differential forms on Riemannian manifolds, Mem. Amer. Math. Soc.,20 (1956), p. 56.MathSciNetGoogle Scholar
  4. [4]
    G. F. D. Duff,Differential forms in manifolds with boundary, Ann. Math.,56 (1952), pp. 115–127.CrossRefMATHMathSciNetGoogle Scholar
  5. [5]
    G. F. D. Duff -D. C. Spencer,Harmonic tensors on riemannian manifolds with boundary, Ann. Math.,56 (1) (1952), pp. 128–156.CrossRefMathSciNetGoogle Scholar
  6. [6]
    J. Eells -Ch. B. Morrey,A variational method in the theory of harmonic integrals, Ann. of Math.,63 (1956), pp. 91–128.CrossRefMathSciNetGoogle Scholar
  7. [7]
    K. O. Friedrichs,The identity of weak and strong extensions of differential operators, Trans. Amer. Math. Soc.,55 (1944), pp. 132–151.CrossRefMATHMathSciNetGoogle Scholar
  8. [8]
    K. O. Friedrichs,On differential forms on riemannian manifolds, Comm. Pure Appl. Math.,8 (4) (1955), pp. 551–590.MATHMathSciNetGoogle Scholar
  9. [9]
    M. P. Gaffney,Hilbert space methods in the theory of harmonic integrals, Trans. Amer. Math. Soc.,78 (1955), pp. 420–444.CrossRefMathSciNetGoogle Scholar
  10. [10]
    V. Georgescu,On Hodge-Kodaira-de Rham decomposition theorems, Stud. Cerc. Mat., to appear (in roumanian).Google Scholar
  11. [11]
    G. Geymonat,Sui problemi ai limiti per i sistemi lineari ellittici, Ann. Mat. Pura Appl., (IV),69 (1965), pp. 207–284; andSu alcuni problemi ai limiti per i sistemi lineari ellittici secondo Petrowski, Le Matematiche,20 (1965), pp. 211–253.MATHMathSciNetGoogle Scholar
  12. [12]
    T. Kato,Perturbation theory for linear operators, Springer-Verlag, Berlin - Heidelberg - New York, 1966.Google Scholar
  13. [13]
    J. L. Lions -E. Magenes,Nonhomogeneous boundary value problems and applications, Grundlehren181, Springer-Verlag, Berlin - Heidelberg - New York, 1972.Google Scholar
  14. [14]
    J. L. Lions -E. Magenes,Problèmes aux limites non homogènes II, Ann. Inst. Fourier,11 (1961), pp. 137–178.MathSciNetGoogle Scholar
  15. [15]
    Ch. B. Morrey,A variational method in the theory of harmonic integrals II, Amer. Journ. Math.,78 (1956), pp. 137–170.MATHMathSciNetGoogle Scholar
  16. [16]
    Ch. B. Morrey,Multiple integrals in the calculus of variations, Grundlehren130, Springer-Verlag, Berlin - Heidelberg - New York, 1966.Google Scholar
  17. [17]
    L. Nirenberg,Remarks on strongly elliptic partial differential equations, Comm. Pure Appl. Math.,8 (4) (1955), pp. 648–674.Google Scholar
  18. [18]
    R. Palais,Seminar on the Atiyah-Singer index theorem, Princeton University Press, 1965.Google Scholar
  19. [19]
    G. de Rham,Variétés différentiables, Hermann, Paris, 1960.Google Scholar
  20. [20]
    L. Schwartz,Théorie des distributions, Hermann, Paris, 1966.Google Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata 1979

Authors and Affiliations

  • V. Georgescu
    • 1
  1. 1.BucharestRomania

Personalised recommendations