Advertisement

Annali di Matematica Pura ed Applicata

, Volume 122, Issue 1, pp 159–198 | Cite as

Some boundary value problems for differential forms on compact riemannian manifolds

  • V. Georgescu
Article

Summary

Methods based on trace theorems and transposition are applied to some boundary value problems for differential forms on compact Riemannian manifolds. We obtain compatibility conditions of a classical type for the solvability of these problems in various Sobolev spaces.

Keywords

Riemannian Manifold Sobolev Space Differential Form Compatibility Condition Classical Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    N. Aronszajn -A. Krzywicki -J. Szarski,A unique continuation theorem for exterior differential forms on Riemannian manifolds, Arkiv for Math.,4 (1962), pp. 417–453.MathSciNetGoogle Scholar
  2. [2]
    L. Cattabriga,Su un problema al contorno relativo al sistema di equazioni di Stokes, Rend. Sem. Mat. Padova,31 (1961), pp. 1–33.MATHMathSciNetGoogle Scholar
  3. [3]
    P. E. Conner,The Neumann's problem for differential forms on Riemannian manifolds, Mem. Amer. Math. Soc.,20 (1956), p. 56.MathSciNetGoogle Scholar
  4. [4]
    G. F. D. Duff,Differential forms in manifolds with boundary, Ann. Math.,56 (1952), pp. 115–127.CrossRefMATHMathSciNetGoogle Scholar
  5. [5]
    G. F. D. Duff -D. C. Spencer,Harmonic tensors on riemannian manifolds with boundary, Ann. Math.,56 (1) (1952), pp. 128–156.CrossRefMathSciNetGoogle Scholar
  6. [6]
    J. Eells -Ch. B. Morrey,A variational method in the theory of harmonic integrals, Ann. of Math.,63 (1956), pp. 91–128.CrossRefMathSciNetGoogle Scholar
  7. [7]
    K. O. Friedrichs,The identity of weak and strong extensions of differential operators, Trans. Amer. Math. Soc.,55 (1944), pp. 132–151.CrossRefMATHMathSciNetGoogle Scholar
  8. [8]
    K. O. Friedrichs,On differential forms on riemannian manifolds, Comm. Pure Appl. Math.,8 (4) (1955), pp. 551–590.MATHMathSciNetGoogle Scholar
  9. [9]
    M. P. Gaffney,Hilbert space methods in the theory of harmonic integrals, Trans. Amer. Math. Soc.,78 (1955), pp. 420–444.CrossRefMathSciNetGoogle Scholar
  10. [10]
    V. Georgescu,On Hodge-Kodaira-de Rham decomposition theorems, Stud. Cerc. Mat., to appear (in roumanian).Google Scholar
  11. [11]
    G. Geymonat,Sui problemi ai limiti per i sistemi lineari ellittici, Ann. Mat. Pura Appl., (IV),69 (1965), pp. 207–284; andSu alcuni problemi ai limiti per i sistemi lineari ellittici secondo Petrowski, Le Matematiche,20 (1965), pp. 211–253.MATHMathSciNetGoogle Scholar
  12. [12]
    T. Kato,Perturbation theory for linear operators, Springer-Verlag, Berlin - Heidelberg - New York, 1966.Google Scholar
  13. [13]
    J. L. Lions -E. Magenes,Nonhomogeneous boundary value problems and applications, Grundlehren181, Springer-Verlag, Berlin - Heidelberg - New York, 1972.Google Scholar
  14. [14]
    J. L. Lions -E. Magenes,Problèmes aux limites non homogènes II, Ann. Inst. Fourier,11 (1961), pp. 137–178.MathSciNetGoogle Scholar
  15. [15]
    Ch. B. Morrey,A variational method in the theory of harmonic integrals II, Amer. Journ. Math.,78 (1956), pp. 137–170.MATHMathSciNetGoogle Scholar
  16. [16]
    Ch. B. Morrey,Multiple integrals in the calculus of variations, Grundlehren130, Springer-Verlag, Berlin - Heidelberg - New York, 1966.Google Scholar
  17. [17]
    L. Nirenberg,Remarks on strongly elliptic partial differential equations, Comm. Pure Appl. Math.,8 (4) (1955), pp. 648–674.Google Scholar
  18. [18]
    R. Palais,Seminar on the Atiyah-Singer index theorem, Princeton University Press, 1965.Google Scholar
  19. [19]
    G. de Rham,Variétés différentiables, Hermann, Paris, 1960.Google Scholar
  20. [20]
    L. Schwartz,Théorie des distributions, Hermann, Paris, 1966.Google Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata 1979

Authors and Affiliations

  • V. Georgescu
    • 1
  1. 1.BucharestRomania

Personalised recommendations