Annali di Matematica Pura ed Applicata

, Volume 39, Issue 1, pp 245–254 | Cite as

On a class of partial differential equations of even order

  • Alexander Weinstein


The general solution for a class of equations of even order is expressed as a sum of solutions of equations of second order.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Picone,Nuovi indirizzi di ricerca nella teoria e nel calcolo delle soluzioni di talune equazioni lineari alle derivate parziali della Fisica-matematica, « Annali della R. Scuola Normale Superiore di Pisa », Serie II, Vol. V (1936-XIV).Google Scholar
  2. [2]
    A. Weinstein,Generalized axially symmetric potential theory, « Bull. Amer. Math. Soc. », Vol. 59 (1953), pp. 20–28.MATHMathSciNetCrossRefGoogle Scholar
  3. [3] (a)
    A. Weinstein,Sur le problème de Cauchy pour l'équation de Poisson et l'équation des ondes, « C. R. Acad. Sci. », Paris, Vol. 234 (1952), pp. 2584–2585.MATHMathSciNetGoogle Scholar
  4. [3] (b)
    The singular solutions and the Cauchy problem for generalized Tricomi's equations, « Communications on Pure and Applied Mathematics », Vol. II, pp. 105–116 (1954).MathSciNetGoogle Scholar
  5. [3] (c)
    On the wave equation and the equation of Euler-Poisson, Proceedings of Fifth Symposium in Appl. Math., McGraw Hill, 1954, pp. 137–148.Google Scholar
  6. [4]
    J. B. Diaz andH. F. Weinberger,A solution of the singular initial value problem for the Euler-Poisson-Darboux equation, « Proc. Amer. Math. Soc. », Vol. 4 (1923), pp. 703–715.CrossRefMathSciNetGoogle Scholar
  7. [5]
    R. J. Duffin,Continuation of biharmonic functions by reflection II, Technical Report No. 13, 1954, Carnegie Institute of Technology.Google Scholar
  8. [6]
    L. Garding,The Solution of Cauchy's problem for two totally hyperbolic linear differential equations by means of Riesz integrals, « Annals of Math. », Vol. 48, No. 4 (1942).Google Scholar
  9. [7]
    R. Courant andD. Hilbert,Methoden der mathematischen physik, Vol. II, Berlin, 1937.Google Scholar
  10. [8]
    A. Weinstein,Etude des spectres des équations aux derivées partielles de la theorie des plaques elastiques, « Memorial Sc. Math. », No. 88 (1937).Google Scholar
  11. [9]
    E. K. Blum,The Euler-Poisson-Darboux equation in the exceptional Cases, « Proc. Amer. Math. Soc. », Vol. 4 (1954), pp. 511–520.CrossRefMathSciNetGoogle Scholar

Copyright information

© Swets & Zeitlinger B. V. 1955

Authors and Affiliations

  • Alexander Weinstein
    • 1
  1. 1.College Park

Personalised recommendations