Experimental Mechanics

, Volume 43, Issue 3, pp 269–279 | Cite as

Thin film cracking modulated by underlayer creep

  • J. Liang
  • R. Huang
  • J. H. Prévost
  • Z. Suo


In devices that integrate dissimilar materials in small dimensions, crack extension in one material often accompanies inelastic deformation in another. In this paper we analyze a channel crack advancing in an elastic film, while an underlayer creeps. The film is subject to a tensile stress. As the underlayer creeps, the stress field in the film relaxes in the crack wake, and intensifies around the crack tip. In a blanket film, the crack can attain a steady velocity, set by two rate processes: subcritical decohesion at the crack tip, and creep in the underlayer. In a thin-film microbridge over a viscous stripe, the crack cannot grow when the bridge is short, and can grow at a steady velocity when the bridge is long. We use a two-dimensional shear lag model to approximate the three-dimensional fracture process, and an extended finite element method to simulate the moving crack with an invariant, relatively coarse mesh. On the basis of the theoretical findings, we propose new experiments to measure fracture toughness and creep laws in small structures. As a byproduct, an analytical formula is found for the growth rate per temperature cycle of a channel crack in a brittle film, induced by ratcheting plastic deformation in a metal underlayer.

Key Words

Crack thin film creep ratcheting 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.D. Thouless, “Cracking and Delamination of Coatings,”J. Vac. Sci. Technol. A,9,2510–2515 (1991).CrossRefGoogle Scholar
  2. 2.
    Hutchinson, J.W. andSuo, Z., “Mixed-mode Cracking in Layered Materials,”Advances in Applied Mechanics,29,63–191 (1992).Google Scholar
  3. 3.
    Evans, A.G. andHutchinson, J.W., “The Thermomechanical Integrity of Thin Films and Multilayers,”Acta Metall. Mater.,43,2507–2530 (1995).Google Scholar
  4. 4.
    Cook, R.F. andSuo, Z., “Mechanisms Active during Fracture under Constraint,”MRS Bulletin,27,45–51 (2002).Google Scholar
  5. 5.
    Suo, Z., “Reliability of Interconnect Structures.” A Manuscript prepared as a chapter in Volume 8: Interfacial and Nanoscale Failure, W. Gerberich and W. Yang, eds., Comprehensive Structural Integrity, I. Milne, R.O. Ritchie, and B. Karihaloo, editors-in-Chief. Due for publication early 2003. (Preprint available online at http://www.princeton.edu/∼suo, Publication 139.) Google Scholar
  6. 6.
    Kook, S.-Y. andDauskardt, R.H., “Moisture-assisted Subcritical Debonding of a Polymer/Metal Interface,”J. Appl. Phys.,91,1293–1303 (2002).CrossRefGoogle Scholar
  7. 7.
    Soboyejo, W.O., Wang, R., Katsube, N., Seghi, R., Pagedas, C., Skraba, P., Mumm, D.R., andEvans, A.G., “Contact Damage of Model Dental Multilayers: Experiments and Finite Element Simulations,”Key Engineering Materials,198–199,135–178 (2001).Google Scholar
  8. 8.
    Kahn, H., Heuer, A.H., andBallarini, R., “On-chip Testing of Mechanical Properties of MEMS Devices,”MRS Bulletin,26,300–301 (2001).Google Scholar
  9. 9.
    Muhlstein, C.L., Stach, E.A., andRitchie, R.O., “Mechanism of Fatigue in Micron-scale Films of Polycrystalline Silicon for Microelectromechanical Systems,”Appl. Phys. Lett.,80,1532–1534 (2002).CrossRefGoogle Scholar
  10. 10.
    Evans, A.G., Mumm, D.R., Hutchinson, J.W., Meier, G.H., andPettit, F.S., “Mechanisms Controlling the Durability of Thermal Barrier Coatings,”Progress in Materials Science,46,505–553 (2001).Google Scholar
  11. 11.
    Huang, M., Suo, Z., Ma, Q., andFujimoto, H., “Thin Film Cracking and Ratcheting Caused by Temperature Cycling,”J. Mater. Res.,15,1239–1242 (2000).Google Scholar
  12. 12.
    Huang, M., Suo, Z., andMa, Q., “Plastic Ratcheting Induced Cracks in Thin Film Structures,”J. Mech. Phys. Solids,50,1079–1098 (2002).Google Scholar
  13. 13.
    Begley, M.R. andEvans, A.G., “Progressive Cracking of a Multilayer System upon Thermal Cycling,”J. Appl. Mech.,68,513–520 (2001).CrossRefGoogle Scholar
  14. 14.
    He, M.Y., Evans, A.G., andHutchinson, J.W., “The Ratcheting of Compressed Thermally Grown Thin Films on Ductile Substrates,”Acta Mater.,48,2593–2601 (2000).CrossRefGoogle Scholar
  15. 15.
    Karlsson, A.M. andEvans, A.G., “A Numerical Model for the Cyclic Instability of Thermally Grown Oxides in Thermal Barrier Systems,”Acta Mater.,49,1793–1804 (2001).CrossRefGoogle Scholar
  16. 16.
    Beuth, J.L., “Cracking of Thin Bonded Films in Residual Tension,”Int. J. Solids Structures,29,1657–1675 (1992).CrossRefGoogle Scholar
  17. 17.
    Ye, T., Suo, Z., andEvans, A.G., “Thin Film Cracking and the Roles of Substrate and Interface,”Int. J. Solids Structures,29,2639–2648 (1992).CrossRefGoogle Scholar
  18. 18.
    Hu, M.S. andEvans, A.G., “The Cracking and Decohesion of Thin Films on Ductile Substrates,”Acta Metall.,37,917–925 (1989).Google Scholar
  19. 19.
    Beuth, J.L. andKlingbeil, N.W., “Cracking of Thin Films Bonded to Elastic-plastic Substrates,”J. Mech. Phys. Solids,44,1411–1428 (1996).Google Scholar
  20. 20.
    Leterrier, Y., Boogh, L., Andersons, J. andMansons, J-A. E., “Adhesion of Silicon Oxide Layers on Poly(ethylene-terephthalate) I: Effect of Substrate Properties on Coatings Fragmentation Process,”J. Polym. Sci. Part B. Polm. Phys.,35,1449–1461 (1997).Google Scholar
  21. 21.
    Hobart, K.D., Kub, F.J., Fatemi, M., Twigg, M.E., Thompson, P.E., Kuan, T.S., andInoki, C.K., “Compliant Substrates: A Comprehensive Study of the Relaxation Mechanisms of Strained Films Bonded to High and Low Viscosity Oxides,”J. Electron. Mater.,29,897–900 (2000).Google Scholar
  22. 22.
    Yin, H., Huang, R., Hobart, K.D., Suo, Z., Kuan, T.S., Inoki, C.K., Shieh, S.R., Duffy, T.S., Kub, F.J., andSturm, J.C., “Strain Relaxation of SiGe Islands on Compliant Oxide,”J. Appl. Phys.,91,9716–9722 (2002).Google Scholar
  23. 23.
    Wagner, H.S., Gleskova, H., Sturm, J.C., andSuo, Z., “Novel Processing Technology for Macroelectronics,”in Technology and Applications of Amorphous Silicon, R.A. Street, ed., pp.222–251, Springer, Berlin (2000).Google Scholar
  24. 24.
    Sikder, A.K., Irfan, I.M., Kumar, A., andAnthony, J.M., “Nano-Indentation Studies of Xerogel and Silk Low-k Dielectric Materials,”J. Electron. Mater.,30,1527–1531 (2001).Google Scholar
  25. 25.
    Toivola, Y., Thurn, J., Cook, R.F., “Structural, Electrical, and Mechanical Properties Development During Curing Of Low-k Hydrogen Silsesquioxane Films,”J. Electrochem. Soc.,149,F9-F17 (2002).CrossRefGoogle Scholar
  26. 26.
    Huang, R., Prévost, J.H., andSuo, Z., “Loss of Constraint on Fracture in Thin Film Structures Due to Creep,”Acta Mater.,50,4137–4148 (2002).CrossRefGoogle Scholar
  27. 27.
    Freund, L.B. and Nix, W.D., unpublished work.Google Scholar
  28. 28.
    Moran, P.D. andKuech, T.F., “Kinetics of Strain Relaxation in Semiconductor Films Grown on Borosilicate Glass-bonded Substrates,”J. Electron. Mater.,30,802–806 (2001).Google Scholar
  29. 29.
    Huang, R., Yin, H., Liang, J., Hobart, K.D., Sturm, J.C., andSuo, Z., “Relaxation of a Strained Elastic Island on a Viscous Layer,”Mater. Res. Soc. Symp. Proc.,695,115–120 (2001).Google Scholar
  30. 30.
    Dmowska, R. andRice, J.R., “Fracture Theory and Its Seismological Applications,”in Continuum Theories in Solid Earth Physics, R. Teisseyre, ed., Physics and Evolution of the Earth's Interiol, Vol. 3, pp.187–255, Elsevier, Oxford (1986).Google Scholar
  31. 31.
    Freund, L.B., Dynamic Fracture Mechanics, Cambridge University Press (1990).Google Scholar
  32. 32.
    Nix, W.D., “Mechanical Properties of Thin Films,”Metall. Trans. A,20,2217–2245 (1989).Google Scholar
  33. 33.
    Baker, S.P., Kretschmann, A., andArzt, E., “Thermomechanical Behavior of Different Texture Components in Cu Thin Films,”Acta Mater.,49,2145–2160 (2001).CrossRefGoogle Scholar
  34. 34.
    Belytschko, T. andBlack T., “Elastic Crack Growth in Finite Elements with Minimal Remeshing,”Int. J. Numer. Methods Eng.,45,601–620 (1999).CrossRefMathSciNetGoogle Scholar
  35. 35.
    Moës, N., Dolbow, J., andBelytschko, T., “A Finite Element Method for Crack Growth without Remeshing,”Int. J. Numer. Methods Eng.,46,131–150 (1999).CrossRefGoogle Scholar
  36. 36.
    Daux, C., Moës, N., Dolbow, J., Sukumar, N., andBelytschko, T., “Arbitrary Branched and Intersecting Cracks with the Extended Finite Element Method,”Int. J. Numer. Methods Eng.,48,1741–1760 (2000).CrossRefGoogle Scholar
  37. 37.
    Sukumar, N., Srolovitz, D.J., Baker, T.J., and Prévost, J.H., “Brittle Fracture in Polycrystalline Microstructures with the Extended Finite Element Method,” Int. J. Numer. Methods Eng., in press.Google Scholar
  38. 38.
    Prévost, J.H., “DYNAFLOW: A Nonlinear Transient Finite Element Analysis Program,” Princeton University (1981). Last updated in 2002.Google Scholar
  39. 39.
    Rice, J.R., “A Path Independent Integral and Approximate Analysis of Strain Concentration by Notches and Cracks,”J. Appl. Mech.,35,379–386 (1968).Google Scholar
  40. 40.
    Irwin, G. R., “Analysis of Stresses and Strains Near the End of a Crack Traversing a Plate,”J. Appl. Mech.,24,361–364 (1957).Google Scholar
  41. 41.
    Huang, H.B. andSpaepen, F., “Tensile Testing of Free-standing Cu, Ag and Al Thin Films and Ag/Cu Multilayers,”Acta Mater.,48,3261–3269 (2000).Google Scholar
  42. 42.
    LaVan D.A., Sharpe, W.N., “Tensile Testing of Microsamples,” EXPERIMENTAL MECHANICS,39,210–216 (1999).CrossRefGoogle Scholar
  43. 43.
    Kraft, O. andVolkert, C.A., “Mechanical Testing of Thin Films and Small Structures,”Adv. Eng. Mater.,3 (3),99–110 (2001).CrossRefGoogle Scholar
  44. 44.
    Vinci, R.P., Baker, S.P., eds., “Mechanical Properties in Small Dimensions,” MRS Bulletin,27,12–53 (2002).Google Scholar
  45. 45.
    Ma, Q., Xie, J., Chao, S., El-Mansy, S., McFadden, R., andFujimoto, H., “Channel Cracking Technique for Toughness Measurement of Brittle Dielectric Thin Films on Silicon Substrates,”Mater. Res. Soc. Symp. Proc. 516,331–336 (1998).Google Scholar
  46. 46.
    Lawn, B., Fracture of Brittle Solids, 2nd edition, Cambridge University Press (1993).Google Scholar
  47. 47.
    Suresh, S., Fatigue of Materials, 2nd edition, Cambridge University Press (1998).Google Scholar
  48. 48.
    Lehner, F.K., Li, V.C., andRice, J.R., “Stress Diffusion Along Rupture Plate Boundaries,”Journal of Geophysical Research,86,6155–6169 (1981).Google Scholar

Copyright information

© Society for Experimental Mechanics 2003

Authors and Affiliations

  • J. Liang
    • 1
  • R. Huang
    • 2
  • J. H. Prévost
    • 2
  • Z. Suo
    • 1
  1. 1.Department of Mechanical and Aerospace Engineering and Princeton Materials InstitutePrinceton
  2. 2.Department of Civil and Environmental EngineeringPrinceton UniversityPrinceton

Personalised recommendations