Journal of Mathematical Biology

, Volume 34, Issue 5–6, pp 654–674

Inclusive fitness arguments in genetic models of behaviour

  • Peter D. Taylor


My purpose here is to provide a coherent account of inclusive fitness techniques, accessible to a mathematically literate graduate student in evolutionary biology, and to relate these to standard one-locus genetic models. I begin in Sect. 2 with a general formulation of evolutionary stability; in Sect. 3 and Sect. 4 I interpret the basic stability conditions within genetic and inclusive fitness models. In Sect. 5 I extend these concepts to the case of a class-structured population, and in Sect. 6 I illustrate these notions with a sex ratio example. In Sect. 7 I give a proof of the result that under additive gene action and weak selection, an inclusive fitness argument is able to verify an important stability condition (2.5) for one-locus genetic models. Most of these results have been published.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrams, P. A., Matsuda, H. and Harada, Y. 1993. Evolutionarily unstable fitness maxima and stable fitness minima of continuous traits. Evol. Ecol.7: 465–487.CrossRefGoogle Scholar
  2. Bulmer, M. G. 1986. Sex ratio theory in geographically structured populations, Heredity56: 69–73.Google Scholar
  3. Charlesworth, B. 1980a. Models of kin selection. In: Evolution of Social Behaviour: Hypotheses and Empirical Tests, (ed. H. Markl), Verlag Chemie, Weinheim.Google Scholar
  4. Charlesworth, B. 1980b. Evolution in age-structured populations. Cambridge Studies in Mathematical Biology, Cambridge Univ. PressGoogle Scholar
  5. Charnov, E. L. 1977. An elementary treatment of the genetical theory of kin selection, J. Theor. Biol.66: 541–550CrossRefGoogle Scholar
  6. Christiansen, F. B. 1991. On conditions for evolutionary stability for a continuously varying character, Amer. Nat.138: 37–50CrossRefGoogle Scholar
  7. Crow J. F. and Kimura M. 1970. An Introduction to Population Genetics Theory, New York: Harper and RowGoogle Scholar
  8. Eshel, I. 1983. Evolutionary and continuous stability, J. Theor. Biol.103, 99–111CrossRefMathSciNetGoogle Scholar
  9. Eshel, I, and Motro, U. 1981. Kin selection and strong evolutionary stability of mutual help, Theor. Pop. Biol.19, 420–433CrossRefMathSciNetGoogle Scholar
  10. Forsyth, A. 1981. Sex ratio and parental investment in an ant population. Evolution36: 1252–1253CrossRefGoogle Scholar
  11. Frank, S. A. 1986. Hierarchical selection theory and sex ratios. I. General solutions for structured populations, Theor. Pop. Biol.29: 312–342CrossRefMATHGoogle Scholar
  12. Grafen, A. 1984. Natural, kin and group selection, in Behavioural Ecology, An Evolutionary Approach (J. R. Krebs and N. B. Davies, eds) 62–84. SinauerGoogle Scholar
  13. Grafen, A. 1985a. A geometric view of relatedness, Oxford Surveys in Evolutionary Biology2: 28–89Google Scholar
  14. Grafen, A. 1985b. Hamilton's rule OK, Nature318: 310–311CrossRefGoogle Scholar
  15. Hamilton, W. D. 1964. The genetical evolution of social behaviour, I and II, J. Theor. Biol.7: 1–52CrossRefGoogle Scholar
  16. Hamilton, W. D. 1970. Selfish and spiteful behaviour in an evolutionary model, Nature (Lond.)228: 1218–1220CrossRefGoogle Scholar
  17. Hamilton, W. D. 1972. Altruism and related phenomena, mainly in social insects, Ann. Rev. Ecol. Syst.3: 192–232CrossRefGoogle Scholar
  18. Hamilton, W. D. 1975. Innate social aptitudes of man: an approach from evolutionary biology. In: Biosocial Anthropology (R. Fox, ed.) pp 133–155. New York: John Wiley and sonsGoogle Scholar
  19. Iwasa, Y. 1981. Role of sex ratio in the evolution of eusociality in haplodiploid social insects, J. theor. Biol.93: 125–142CrossRefGoogle Scholar
  20. Jacquard, A. 1974. The Genetic Structure of Populations (trans. D. and B. Charlesworth) Biomathematics Series 5, Springer, New YorkGoogle Scholar
  21. Leslie, P. H. 1948. Some further remarks on the use of matrices in population mathematics, Biometrika35: 213–245CrossRefMATHMathSciNetGoogle Scholar
  22. Maynard Smith, J. 1974. The theory of games and the evolution of animal conflicts, J. theor. Biol.47: 209–221CrossRefMathSciNetGoogle Scholar
  23. Maynard Smith, J. and Price, G. R., 1973. The logic of animal conflict. Nature246: 15–18CrossRefGoogle Scholar
  24. Metz, J. A. J., R. M. Nisbet and Geritz, S. A. H. 1992. How should we define ‘fitness’ for general ecological scenarios? TREE7:198–202Google Scholar
  25. Michod, R. E. and Hamilton, W. D. 1980. Coefficients, of relatedness in sociobiology, Nature288: 694–697CrossRefGoogle Scholar
  26. Pamilo, P. and Crozier, R. H. 1982. Measuring genetic relatedness in natural populations: methodology. Theor. Pop. Biol.21: 171–193CrossRefGoogle Scholar
  27. Price, G. R. 1970. Selection and covariance, Nature227: 520–521CrossRefGoogle Scholar
  28. Queller, D. C. 1985. Kinship, reciprocity and synergism in the evolution of social behaviour, Nature318: 366–367CrossRefGoogle Scholar
  29. Seger, J. 1981. Kinship and covariance, J. theor. Biol.91: 191–213CrossRefMathSciNetGoogle Scholar
  30. Taylor, P. D. 1981. Sex ratio compensation in ant populations. Evolution35: 1250–1251CrossRefGoogle Scholar
  31. Taylor, P. D. 1988a. An inclusive fitness model for dispersal of offspring, J. theor. Biol.130: 363–378Google Scholar
  32. Taylor, P. D. 1988b. Inclusive fitness models with two sexes. Theor. Pop. Biol.34: 145–168CrossRefMATHGoogle Scholar
  33. Taylor, P. D. 1989. Evolutionary stability in one-parameter models under weak selection, Theor. Pop. Biol.36: 125–143CrossRefMATHGoogle Scholar
  34. Taylor, P. D. 1990. Allele frequency change in a class-structured population, American Naturalist135: 95–106CrossRefGoogle Scholar
  35. Taylor, P. D. and Getz, W. M. 1994. An inclusive fitness model for the evolutionary advantage of sib-mating. Evol. Ecol. 8: 61–69CrossRefGoogle Scholar
  36. Taylor, P. D. and Frank, S. A. 1996. How to make a kin selection model. J. theor. Biol. (in press)Google Scholar
  37. van Tienderen, P. H. and De Jong, D. 1986. Sex ratio under the haystack model: polymorphism may occur. J. theor. Biol.122: 69–81Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Peter D. Taylor
    • 1
  1. 1.Department of Mathematics and StatisticsQueen's UniversityKingston

Personalised recommendations