Calcified Tissue International

, Volume 33, Issue 1, pp 583–586 | Cite as

Variations in mineral apposition rate of trabecular bone within the beagle skeleton

  • T. J. Wronski
  • J. M. Smith
  • W. S. S. Jee
Laboratory Investigation

Summary

The mineral apposition rate of trabecular bone was determined in several skeletal sites of young adult beagles. Tetracycline derivatives were administered intravenously or orally on 2 separate occasions preceding the day of sacrifice in order to label actively mineralizing bone surfaces. The rate of mineral apposition was calculated by dividing the distance between the 2 tetracycline markers by the time interval between their administration. The lumbar vertebra, proximal humerus, and pelvis, each of which contains red marrow, were found to have a significantly higher (P<0.001) rate of mineral apposition in trabecular bone than the skeletal sites containing yellow marrow—the proximal ulna and distal humerus. The mean apposition rate in the former 3 sites was 1.3±0.3µm/day, while that in the latter 2 was 0.9±0.2µm/day (uncorrected for plane of sectioning). It is tempting to speculate that this finding may be a consequence of differences in vascularity between red and yellow marrow.

Key words

Tetracycline Trabecular bone Mineral apposition rate Bone marrow Vascularity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Frost, H. M.: Measurement of human bone formation by means of tetracycline labeling, Can. J. Biochem. Physiol.41: 31–42, 1963PubMedGoogle Scholar
  2. 2.
    Harris, W. H., Haywood, E. A., Lavorgna, J., Hayblen, D. L.: Spatial and temporal variations in cortical bone formation in dogs: A long-term study, J. Bone Jt. Surg.50A: 1118–1128, 1969Google Scholar
  3. 3.
    Lee, W. R., Marshall, J. H., Sissons, H. A.: Calcium accretion and bone formation in dogs, J. Bone Jt. Surg.47B: 157–170, 1965Google Scholar
  4. 4.
    Marotti, G.: Map of bone formation rate values recorded throughout the skeleton of the dog. In Z. F. G. Jaworski (ed.): Bone Morphometry, pp. 202–207, University of Ottawa Press, Ottawa, Ontario, 1976Google Scholar
  5. 5.
    Wronski, T. J., Smith, J. M., Jee, W. S. S.: The microdistribution and retention of239Pu on trabecular bone surfaces of the beagle: Implications for the induction of osteosarcoma, Rad. Res.83: 74–89, 1980Google Scholar
  6. 6.
    Lee, W. R.: Appositional bone formation in canine bone: A quantitative microscopic study using tetracycline markers, J. Anat.98: 665–677, 1964PubMedGoogle Scholar
  7. 7.
    Tam, C. S., Harrison, J. E., Reed, R., Cruickshank, B.: Bone apposition rate as an index of bone metabolism, Metabolism27: 143–150, 1979CrossRefGoogle Scholar
  8. 8.
    Frost, H. M.: Tetracycline-based histological analysis of bone remodeling, Calcif. Tissue Res.3: 211–237, 1969CrossRefPubMedGoogle Scholar
  9. 9.
    Milch, R. A., Rall, D. P., Tobie, J. E.: Bone localization of the tetracyclines, J. Natl. Cancer Inst.19: 87–93, 1957PubMedGoogle Scholar
  10. 10.
    Urist, M. A., Ibsen, K. H.: The chemical reactivity of mineralized tissue with oxytetracycline, Arch. Pathol.76: 484–496, 1963PubMedGoogle Scholar
  11. 11.
    Frost, H. M.: Histomorphometry of trabecular bone: 1. Theoretical correction of appositional rate measurements. In P. J. Meunier (ed.): Bone Histomorphometry, pp. 361–370, Societé de la Nouvelle Imprimerie Fournie, Toulouse, 1977Google Scholar
  12. 12.
    Teitelbaum, S. L., Nichols, S. H.: Tetracycline-based morphometric analysis of trabecular bone dynamics. In P. J. Meunier (ed.): Bone Histomorphometry, pp. 311–320, Societé de la Nouvelle Imprimerie Fournie, Toulouse, 1977Google Scholar
  13. 13.
    Frost, H. M.: Bone dynamics in metabolic bone disease, J. Bone Jt. Surg.48A: 1192–1203, 1966Google Scholar
  14. 14.
    Branemark, P.: Vital microscopy of bone marrow in rabbit, Scand. J. Clin. Lab. Invest. [Suppl. 38]11: 1–82, 1959PubMedGoogle Scholar
  15. 15.
    Van Dyke, D.: Similarity in distribution of skeletal blood flow and erythropoietic marrow, Clin. Orthop.52: 37–51, 1967PubMedGoogle Scholar
  16. 16.
    Gross, P. M., Heistad, D. D., Marcus, M. L.: Neurohumoral regulation of blood flow to bones and marrow, Am. J. Physiol.237:H440-H448, 1979PubMedGoogle Scholar
  17. 17.
    Meunier, P., Edouard, C., Richard, D., Laurent, J.: Histomorphometry of osteoid tissue: The hyperosteoidoses. In P. J. Meunier (ed.): Bone Histomorphometry, pp. 249–262, Societé de la Nouvelle Imprimerie Fournie, Toulouse, 1977Google Scholar
  18. 18.
    Melsen, F., Mosekilde, L.: Dynamic studies of trabecular bone formation and osteoid maturation in normal and certain pathological conditions, Metab. Bone Dis.1: 45–48, 1978CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • T. J. Wronski
    • 1
  • J. M. Smith
    • 1
  • W. S. S. Jee
    • 1
  1. 1.Department of Pharmacology, Radiobiology DivisionUniversity of Utah College of MedicineSalt Lake CityUSA
  2. 2.Biomedical Research DivisionNASA Ames Research CenterMoffett FieldUSA

Personalised recommendations