Advertisement

Hyperfine Interactions

, Volume 50, Issue 1–4, pp 659–665 | Cite as

Extraterrestrial magnetite studied by Mössbauer spectroscopy

  • M. B. Madsen
  • S. Mørup
  • J. M. Knudsen
Magnetic Oxide Compounds

Abstract

The meteorite Orgueil is a carbonaceous chondrite of type CI. Carbonaceous chondrites contain Fe(III), Fe(II) and in some cases metallic iron, indicating that they are in a state far from thermodynamic equilibrium. In Orgueil about 40% of the iron is present in magnetite (Fe3O4). In this work a sample of magnetite grains extracted from Orgueil has been studied by Mössbauer spectroscopy. It has been found that the magnetic phase contains about 11% of maghemite and that the remaining magnetite has a vacancy concentration smaller than 0.006, corresponding to the formula Fe2.994O4.

Keywords

Iron Spectroscopy Thin Film Fe3O4 Magnetite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. Anders and M. Ebihara, Geochim. Cosmochim. Acta 46 (1982) 2363.CrossRefADSGoogle Scholar
  2. [2]
    B. Nagy, Carbonaceous Meteorites (Elsevier Scientific Publ. Comp., 1975) p. 197.Google Scholar
  3. [3]
    W. Herr and B. Skerra, in:Meteorite Research, ed. P.M. Millman (Reidel, Dordrecht, Holland, 1969) p. 106.Google Scholar
  4. [4]
    T.J. Wdowiak and D.G. Agresti, Nature 311 (1984) 140.CrossRefADSGoogle Scholar
  5. [5]
    M.B. Madsen, S. Mørup, T.V.V. Costa, J.M. Knudsen and M. Olsen, Nature 321 (1986) 501.CrossRefADSGoogle Scholar
  6. [6]
    K. Tomeoka and P.R. Buseck, Geochim. Cosmochim. Acta 52 (1988) 1627.CrossRefADSGoogle Scholar
  7. [7]
    J. Jedwab, Earth Planet. Sci. Lett. 2 (1967) 440.CrossRefADSGoogle Scholar
  8. [8]
    J. Jedwab, Icarus 15 (1971) 319.CrossRefADSGoogle Scholar
  9. [9]
    J.F. Kerridge, A.L. Mackay and W.V. Boynton, Science 205 (1979) 395.ADSGoogle Scholar
  10. [10]
    R. Hutchison,The Search for our Beginning (Oxford University Press, 1983) p. 134.Google Scholar
  11. [11]
    H.Y. McSween, Jr., Geochim. Cosmochim. Acta 51 (1987) 2469.CrossRefADSGoogle Scholar
  12. [12]
    L. Häggström, H. Annersten, T. Ericsson, R. Wäppling, W. Karner and S. Bjarman, Hyp. Int. 5 (1978) 201.CrossRefGoogle Scholar
  13. [13]
    R. Aragón, J.P. Shepard, J.W. Koenitzer, D.J. Buttrey, R.J. Rasmussen and J.M. Honig, J. Appl. Phys. 57 (1985) 3221.CrossRefADSGoogle Scholar
  14. [14]
    A. Ramdani, J. Steinmetz, C. Gleitzer, J.M.D. Coey and J.M. Friedt, J. Phys. Chem. Solids 48 (1987) 217.CrossRefADSGoogle Scholar
  15. [15]
    H.-P. Weber and S.S. Hafner, Z. für Kristallographie 133 (1971) 327CrossRefGoogle Scholar
  16. [16]
    S. Mørup and E. Both, Nucl. Instr. Meth. 124 (1975) 445.CrossRefGoogle Scholar
  17. [17]
    H. Annersten and S.S. Hafner, Z. für Kristallographie 133 (1971) 327CrossRefGoogle Scholar
  18. [18]
    R. Aragón and J.M. Honig, Phys. Rev. B 37 (1988) 209.CrossRefADSGoogle Scholar
  19. [19]
    R.J. Pollard, Hyp. Int. 41 (1988) 509.ADSGoogle Scholar
  20. [20]
    H. Topsøe, J.A. Dumesic and M. Boudart, J. de Physique 12 (1974) C6–411.Google Scholar

Copyright information

© J.C. Baltzer A.G. Scientific Publishing Company 1989

Authors and Affiliations

  • M. B. Madsen
    • 1
  • S. Mørup
    • 1
  • J. M. Knudsen
    • 2
  1. 1.Laboratory of Applied PhysicsTechnical University of DenmarkLyngbyDenmark
  2. 2.Physics LaboratoryH.C. Ørsted InstituteCopenhagen ØDenmark

Personalised recommendations