Hyperfine Interactions

, Volume 50, Issue 1–4, pp 659–665 | Cite as

Extraterrestrial magnetite studied by Mössbauer spectroscopy

  • M. B. Madsen
  • S. Mørup
  • J. M. Knudsen
Magnetic Oxide Compounds

Abstract

The meteorite Orgueil is a carbonaceous chondrite of type CI. Carbonaceous chondrites contain Fe(III), Fe(II) and in some cases metallic iron, indicating that they are in a state far from thermodynamic equilibrium. In Orgueil about 40% of the iron is present in magnetite (Fe3O4). In this work a sample of magnetite grains extracted from Orgueil has been studied by Mössbauer spectroscopy. It has been found that the magnetic phase contains about 11% of maghemite and that the remaining magnetite has a vacancy concentration smaller than 0.006, corresponding to the formula Fe2.994O4.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. Anders and M. Ebihara, Geochim. Cosmochim. Acta 46 (1982) 2363.CrossRefADSGoogle Scholar
  2. [2]
    B. Nagy, Carbonaceous Meteorites (Elsevier Scientific Publ. Comp., 1975) p. 197.Google Scholar
  3. [3]
    W. Herr and B. Skerra, in:Meteorite Research, ed. P.M. Millman (Reidel, Dordrecht, Holland, 1969) p. 106.Google Scholar
  4. [4]
    T.J. Wdowiak and D.G. Agresti, Nature 311 (1984) 140.CrossRefADSGoogle Scholar
  5. [5]
    M.B. Madsen, S. Mørup, T.V.V. Costa, J.M. Knudsen and M. Olsen, Nature 321 (1986) 501.CrossRefADSGoogle Scholar
  6. [6]
    K. Tomeoka and P.R. Buseck, Geochim. Cosmochim. Acta 52 (1988) 1627.CrossRefADSGoogle Scholar
  7. [7]
    J. Jedwab, Earth Planet. Sci. Lett. 2 (1967) 440.CrossRefADSGoogle Scholar
  8. [8]
    J. Jedwab, Icarus 15 (1971) 319.CrossRefADSGoogle Scholar
  9. [9]
    J.F. Kerridge, A.L. Mackay and W.V. Boynton, Science 205 (1979) 395.ADSGoogle Scholar
  10. [10]
    R. Hutchison,The Search for our Beginning (Oxford University Press, 1983) p. 134.Google Scholar
  11. [11]
    H.Y. McSween, Jr., Geochim. Cosmochim. Acta 51 (1987) 2469.CrossRefADSGoogle Scholar
  12. [12]
    L. Häggström, H. Annersten, T. Ericsson, R. Wäppling, W. Karner and S. Bjarman, Hyp. Int. 5 (1978) 201.CrossRefGoogle Scholar
  13. [13]
    R. Aragón, J.P. Shepard, J.W. Koenitzer, D.J. Buttrey, R.J. Rasmussen and J.M. Honig, J. Appl. Phys. 57 (1985) 3221.CrossRefADSGoogle Scholar
  14. [14]
    A. Ramdani, J. Steinmetz, C. Gleitzer, J.M.D. Coey and J.M. Friedt, J. Phys. Chem. Solids 48 (1987) 217.CrossRefADSGoogle Scholar
  15. [15]
    H.-P. Weber and S.S. Hafner, Z. für Kristallographie 133 (1971) 327CrossRefGoogle Scholar
  16. [16]
    S. Mørup and E. Both, Nucl. Instr. Meth. 124 (1975) 445.CrossRefGoogle Scholar
  17. [17]
    H. Annersten and S.S. Hafner, Z. für Kristallographie 133 (1971) 327CrossRefGoogle Scholar
  18. [18]
    R. Aragón and J.M. Honig, Phys. Rev. B 37 (1988) 209.CrossRefADSGoogle Scholar
  19. [19]
    R.J. Pollard, Hyp. Int. 41 (1988) 509.ADSGoogle Scholar
  20. [20]
    H. Topsøe, J.A. Dumesic and M. Boudart, J. de Physique 12 (1974) C6–411.Google Scholar

Copyright information

© J.C. Baltzer A.G. Scientific Publishing Company 1989

Authors and Affiliations

  • M. B. Madsen
    • 1
  • S. Mørup
    • 1
  • J. M. Knudsen
    • 2
  1. 1.Laboratory of Applied PhysicsTechnical University of DenmarkLyngbyDenmark
  2. 2.Physics LaboratoryH.C. Ørsted InstituteCopenhagen ØDenmark

Personalised recommendations